Note that x, t and w are dimensionless variables in Questions F1 and F2. They have no physical significance in those questions.

In practice, derivatives are usually found by combining well-known 'standard derivatives' in a variety of ways, but both the standard derivatives and the rules for combining them are based on Equation 1.

Strictly speaking, position, velocity and acceleration are vector quantities in that each require three scalar components for their complete specification in three dimensions. However, in the case of linear motion each of these quantities is effectively specified by a single scalar component. Thus, in the context of linear motion we will refer to x, v_{x} and a_{x} as position, velocity and acceleration, respectively, even though each is, in reality, only a single component of the corresponding vector.

Mention of Newton's laws, mass and force takes us beyond kinematics and into the realm of dynamics. These topics are fully discussed in the physics strand of FLAP, see the Glossary for details.

For reasons that will become clear later, inverse differentiation is usually referred to as indefinite integration.

Any other function of the form
$F(x)=x^{2}+C$, where C is any constant would be equally acceptable. C is then called an integration constant or a constant of integration.

The constant K here represents the difference between the integration constants C_{1} and C_{2} associated with the inverse derivatives $F_{1}(x)$ and $F_{2}(x)$, i.e. $K=C_{1}-C_{2}$. (v)

Note that in this case we have used additional information about the problem, the condition $\mathrm{V}_{x}(0)=0$, to determine the relevant value of C. This is often necessary in physical problems.

In fact, g varies with distance from the centre of the Earth, and takes slightly different values at different places on the Earth's surface. However, provided we consider a reasonably narrow range of vertical heights and restrict our attention to one locality it is reasonable to treat g as a constant.

Note the distinction between displacement and distance: in one dimension displacement may be positive or negative according to direction, but distance must always be positive.

If x is a positive quantity then $|x|=x$ and
$|-x|=x$.
ω

The physical significance of simple

harmonic motion is discussed in detail in the physics strand of FLAP.
ω is the Greek letter omega.

You can confirm that this is correct by

 showing that its derivative is $-A \omega^{2} \sin (\omega t)$.By combining Equations 10 and 12 it is possible to characterize simple harmonic motion by the requirement that $a_{x}=-\omega^{2} x$.
This is the usual starting point for the analysis of simple harmonic motion and is considered elsewhere in FLAP. See the Glossary for details.

The shaded area in Figure 1b is a
trapezium, the area of which is generally given by
$\frac{1}{2}\left(\right.$ height $_{1}+$ height $\left._{2}\right) \times$ base

Note that whichever inverse derivative of $f(x)$ we choose to use when evaluating the area under the graph, the associated constant of integration C will play no part in the final answer since it will cancel when we calculate the difference $F(b)-F(a)$.

The symbol \approx means 'approximately equal to'.

0

FLAP M5.1 Introducing integration

$\begin{array}{llll}\text { COPYRIGHT © } 1998 & \text { THE OPEN UNIVERSITY } & \text { S570 V1.1 }\end{array}$

Here we are using the definition of the derivative to justify saying

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0}\left(\frac{\Delta A}{\Delta x}\right) & =\lim _{\Delta x \rightarrow 0}\left[\frac{A(x+\Delta x)-A(x)}{\Delta x}\right] \\
& =\frac{d A}{d x}
\end{aligned}
$$

Remember, the distance between two

 points is equal to the magnitude of the displacement from one point to the other.

The symbol \leq should be read as 'is less than or equal to'.

Note that we have used the summation
symbol (Σ) as a shorthand way of indicating the sum.

Notice that, while it is not essential that the points dividing the interval are equally spaced, it is very convenient if they are.

In this case a very crude approximation since the actual value of the integral is 24 .

The extension x increases from 0 to L, and we imagine this interval to be divided into a large number of subintervals by points $x_{1}, x_{2}, \ldots, x_{n+1}$ where $x_{1}=0$ and $x_{n+1}=L$. The sum
$\sum_{i=1}^{n} F_{x}\left(x_{i}\right) \Delta x_{i}$
is thus a good approximation to the work done if the Δx_{i} are small. With practice it is unnecessary to write down this intermediate step, and we go straight to the integral as in this example.

As you perform more and more integrals this result will become very familiar. Nonetheless it is worth pausing to note how remarkable it is that the limit of a sum represented by the symbol on the left can be evaluated with the aid of (inverse) differentiation as shown by the difference on the right. The link between summation and differentiation is far from obvious to most physicists.

Notice that $\int_{1}^{3} t^{4} d t$ is defined to be a limit
of a sum - we can evaluate it using inverse differentiation.

You can confirm this by differentiating.

0

This notation arises from the fundamental theorem of calculus, from which it is evident that definite integrals are closely related to inverse derivatives.

The density is defined as the mass per unit volume.

This force acts perpendicular to the dam wall.

The angular brackets \rangle mean 'the average of' the term enclosed.

If you imagine the arrow in Figure 10a rotating through 360° and carrying the satellite with it, then you can see that the satellite must also rotate through 360°.

You might have anticipated this result since in Figure 10b the section of the satellite to the left of centre is brought nearer to the Earth and so will be pulled further in this direction - not compensated sufficiently by the other half of the satellite, on which the force is weakened, as it is further from the Earth.

This statement is true for the functions treated in this module, but the definition of the definite integral as the limit of a sum allows it to be applied in cases where simple graphical interpretation is not possible.

$\exp (a)$ is an alternative way of writing e^{a}.

$\mathrm{v}_{x}(t)=\frac{d x}{d t}=3 a t^{2}+b$
and $\quad a_{x}(t)=\frac{d \mathrm{v}_{x}}{d t}=6 a t$
When $t=0, x(0)=c$, so c represents the initial position of the moving object.

Similarly, $\mathrm{v}_{x}(0)=b$, so b represents the initial velocity of the moving object.

Three suitable functions would be
$F(x)=x^{2}-2, \quad F(x)=x^{2}$
and $\quad F(x)=x^{2}+1$
㬗
since in each case $\frac{d F}{d x}=f(x)$.

In each of the following C represents an arbitrary constant:
(a) $\quad F(x)=\frac{x^{3}}{3}+C \quad$ since

$$
\frac{d}{d x}\left(\frac{x^{3}}{3}+C\right)=\frac{3 x^{2}}{3}=x^{2}
$$

(b) $\quad F(x)=x^{3}-x^{2}+C \quad$ since
$\frac{d}{d x}\left(x^{3}-x^{2}+C\right)=3 x^{2}-2 x$
(c) $\frac{a x^{2}}{4}+C \quad$ since
$\frac{d}{d x}\left(\frac{a x^{2}}{4}+C\right)=\frac{2 a x}{4}=\frac{a x}{2}$

In each of the following C represents an arbitrary constant:
(a) $F(t)=\frac{-t^{-2}}{2}+C \quad$ since

$$
\frac{d}{d t}\left(\frac{-t^{-2}}{2}+C\right)=\frac{-(-2) t^{-3}}{2}=t^{-3}
$$

(b) $F(t)=6 t^{-0.5}+2 t^{2.5}+C$ since

$$
\frac{d}{d x}\left(6 t^{-0.5}+2 t^{2.5}+C\right)=-3 t^{-1.5}+5 t^{1.5}
$$

We know that $a_{x}(t)=\frac{d \mathbf{v}_{x}}{d t}$ and, using inverse differentiation, we can see that $\mathrm{v}_{x}(t)=A t^{4}+C$, where C is an arbitrary constant, since differentiating $A t^{4}+C$ produces $4 A t^{3}$.

But we also know that $\mathrm{V}_{x}=0$ when $t=0$, and since $\mathrm{v}_{x}(0)=C$, it follows that $C=0$ in this case. Hence $\mathrm{v}_{x}(t)=A t^{4}$ and consequently
$\mathrm{v}_{x}(3 \mathrm{~s})=\left(1 \mathrm{~m} \mathrm{~s}^{-5}\right)(3 \mathrm{~s})^{4}=81 \mathrm{~m} \mathrm{~s}^{-1}$. \qquad

The hatched area is given by
$\frac{1}{2}\left(50 \mathrm{~m} \mathrm{~s}^{-1}+100 \mathrm{~m} \mathrm{~s}^{-1}\right) \times(10 \mathrm{~s}-5 \mathrm{~s})$
$=375 \mathrm{~m}$
Consequently, $x\left(t_{2}\right)-x\left(t_{1}\right)=375 \mathrm{~m}$

The areas under the graph, A_{1}, A_{2} and A_{3}, shown in Figure 4 are
$A_{1}=\left(10 \mathrm{~m} \mathrm{~s}^{-1}\right) \times(4 \mathrm{~s})=40 \mathrm{~m}$
$A_{2}=\frac{1}{2}\left(10 \mathrm{~m} \mathrm{~s}^{-1}\right) \times(2 \mathrm{~s})=10 \mathrm{~m}$
$A_{3}=\frac{1}{2}\left(-5 \mathrm{~m} \mathrm{~s}^{-1}\right) \times(1 \mathrm{~s})=-2.5 \mathrm{~m}$
The displacement s_{x} from the initial position after 7 s is therefore

$$
\begin{aligned}
s_{x}(7 \mathrm{~s}) & =x(7 \mathrm{~s})-x(0) \\
& =(40+10-2.5) \mathrm{m}-0 \mathrm{~m}=47.5 \mathrm{~m}
\end{aligned}
$$

During the final second of its journey s_{x} changes by -2.5 m . The distance travelled during that final second is therefore
2.5 m . \square
\qquad

Using inverse differentiation, we see that $F(x)=x^{3}+C$, where C is a constant, is an inverse derivative of $f(x)=3 x^{2}$
since $\frac{d F}{d x}=f(x)$.
It follows that the required area under the graph is

$$
\begin{aligned}
{[F(x)]_{1}^{3} } & =\left[x^{3}+C\right]_{1}^{3}=(27+C)-(1+C) \\
& =26
\end{aligned}
$$

The graph of $y=9-x^{2}$ is shown in
Figure 6.
In this case we note that an inverse
derivative of $y=9-x^{2}$ is
$Y(x)=9 x-\frac{x^{3}}{3}+C$
where C is a constant

Figure 6 The graph of $y=9-x^{2}$.

Choosing $C=0$, it follows that the area
under the curve between $x=4$ and
$x=7$ is

$$
\begin{aligned}
{[Y(x)]_{4}^{7} } & =\left[9 x-\frac{x^{3}}{3}\right]_{4}^{7} \\
& =\left(63-\frac{343}{3}\right)-\left(36-\frac{64}{3}\right)=-66
\end{aligned}
$$

However, the question asks for the magnitude of the area under the curve, so the answer to the question is +66 .

(a) distance travelled $=V T$.
(b) If the interval t_{2} to t_{3} is subdivided into n short intervals of duration Δt_{i} then the distance travelled in any one of those intervals will be approximately
$\mathrm{V}\left(t_{i}\right) \Delta t_{i}$
and the total distance travelled will be approximately,

$$
\sum_{i=1}^{n} \mathrm{v}\left(t_{i}\right) \Delta t_{i}
$$

The accurate value of the total distance travelled will be given by the limit of the above sum as the number of intervals increases and the duration of the longest approaches zero, i.e. as $\Delta t \rightarrow 0$, but that is just a definite integral, so the total distance travelled between t_{2} and t_{3} is just
$\int_{t_{2}}^{t_{3}} \mathrm{v}(t) d t=\int_{t_{2}}^{t_{3}}\left(a t-b t^{2}\right) d t$

If the height of the column, from $h=0$ to $h=H$, is divided into n subintervals of height Δh_{i} we can approximate the mass of the column by

$$
\sum_{i=1}^{n} \rho\left(h_{i}\right) A \Delta h_{i}
$$

In the limit as the width of the largest slab tends to zero, i.e. as $\Delta h \rightarrow 0$, this sum becomes the definite integral
$\int_{0}^{H} \rho(h) A d h=\int_{0}^{H} \rho_{0} \mathrm{e}^{-h / \lambda} A d h$

The work done will be
$\int_{0}^{L} F_{x}(x) d x=\int_{0}^{L} \frac{\lambda x}{L} d x$
(Note that although the length of the string is increased from L to $2 L$, the extension x only increases from 0 to L, so these are the limits of integration, with respect to x, in this case.)
(a) In this case the integrand is $a t-b t^{2}$.

An inverse derivative of this function is
$\frac{a t^{2}}{2}-\frac{b t^{3}}{3}+C \quad \frac{\text { 時 }}{}$
Choosing $C=0$, it follows from the fundamental theorem of calculus that

$$
\begin{aligned}
& \int_{t_{2}}^{t_{3}}\left(a t-b t^{2}\right) d t=\left[\frac{a t^{2}}{2}-\frac{b t^{3}}{3}\right]_{t_{2}}^{t_{3}} \\
& =\left[\frac{a t_{3}^{2}}{2}-\frac{b t_{3}^{3}}{3}\right]-\left[\frac{a t_{2}^{2}}{2}-\frac{b t_{2}^{3}}{3}\right]
\end{aligned}
$$

i.e.

$$
\int_{t_{2}}^{t_{3}}\left(a t-b t^{2}\right) d t=\frac{a}{2}\left(t_{3}^{2}-t_{2}^{2}\right)-\frac{b}{3}\left(t_{3}^{3}-t_{2}^{3}\right)
$$

(b) In this case the integrand is $A \rho_{0} \mathrm{e}^{-h / \lambda}$.

An inverse derivative of this function is

$$
-A \rho_{0} \lambda \mathrm{e}^{-h / \lambda}+C
$$

Choosing $C=0$, it follows from the fundamental theorem of calculus that

$$
\begin{aligned}
& \begin{array}{l}
\int_{0}^{H} \rho_{0} \mathrm{e}^{-h / \lambda} A d h=\left[-A \rho_{0} \lambda \mathrm{e}^{-h / \lambda}\right]_{0}^{H} \\
\quad=\left(-A \rho_{0} \lambda \mathrm{e}^{-H / \lambda}\right)-\left(-A \rho_{0} \lambda\right)
\end{array} \\
& \text { i.e. } \quad \int_{0}^{H} \rho_{0} \mathrm{e}^{-h / \lambda} A d h=A \rho_{0} \lambda\left(1-\mathrm{e}^{-H / \lambda}\right)
\end{aligned}
$$

(c) In this case the integrand is $\frac{\lambda x}{L}$.

An inverse derivative of this function is
$\frac{\lambda x^{2}}{2 L}+C$.
Choosing $C=0$, it follows from the fundamental theorem of calculus that

$$
\int_{0}^{L} \frac{\lambda x}{L} d x=\left[\frac{\lambda x^{2}}{2 L}\right]_{0}^{L}=\frac{\lambda L^{2}}{2 L}-0=\frac{\lambda L}{2}
$$

Section 1 contains the various Opening items that are a common feature of all FLAP modules. These are designed to give you a clear view of the module's content and the prior knowledge that it assumes, so that you can assess for yourself the extent to which you need to study the module and the degree to which you are prepared for such a study. Sections 2 and 3 contain the basic teaching material of the module, dealing with mathematical expressions and with relations between expressions, particularly equality and inequality. Section 2 starts with a review of the basic operations (addition, subtraction, multiplication and division) together with their symbolic representation and order of priority in written expressions. This topic is taken further in Subsection 2.2 which concentrates on brackets and their use in simplifying and expanding expressions. The manipulation of algebraic and arithmetic fractions (a common source of errors) is discussed in Subsection 2.3, and the topic of powers, roots and reciprocals is covered in Subsection 2.4. The writing and rearrangement of simple equations is dealt with in Subsections 3.1 and 3.2, while Subsection 3.3 looks at proportionality. (Both direct and inverse proportionality are considered, together with the equations that reflect such relationships.) Subsection 3.4 deals with the subject of inequalities and reviews the rules for their manipulation. As is usual in $F L A P$, the module ends with a section of Closing items (Section 4) that includes a summary, a list of the things that you should be able to do on completing the module, and an Exit text designed to let you assess your achievements and alert you to any remaining difficulties. The answers to all the numbered questions included in the module can be found at the end of the module in Section 5.

