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Syllabus outline

Semester 1 — Dr Graham S McDonald

- Vector calculus, including: gradient, divergence, flux and curl, the
divergence theorem and Stokes’ theorem.

- Matrices, determinants, eigenvalues and eigenvectors. Applications of
matrices.

- Partial differential equations and methods of solution, e.g. separation of
variables.

Semester 2 — Dr Tiehan Shen

The magnetic field. Biot and Savart law and Ampere’s law.
Electromagnetic induction. Magnetic flux; Faraday’s and Lenz's law
Transients in LR, RC and LCR circuits;

AC Theory and complex analysis: reactance, impedance and resonance



REVIEW OF FUNDAMENTAL CONCEPTS (part one)

This section includes revision of first year material ...

H1
Scalar versus vector quantities P5.6

Magnitude of a vector, and a unit vector

Physical examples

Equality of vectors

Components of vectors (Cartesian co-oordinates)
Magnitude (in terms of components)

Addition of vectors

Multiplication by a scalar

Difference of vectors

i,j, kunit vectors pl3
and ...
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and something new ...
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Spoce More technically, a field’ is actually
the physical quantity itself and the
‘space’ can include time.
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Some physical examples (e.g. in a weather map)
are then given.



Calculating work done by a spatially-varying force F (x,y,z)

acting along a general curve, C ¢ -
e
Work done over dr=F. dr udr
e C
Work done alongC, W= [. F.dr

... a “line integral”

In component form,
W= |. (Fyi+ Fyj + F,k).(dxi + dyj + dzk)

=[. Fydx+ F,dy + F,dz

P26




Then 2 examples (we will go over the details in handout 2). Firstly ...
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Two examples (two different types of force) ... |p27-p29

The first example gave different work done along different paths — a
“non-conservative force” (also called a dissipative force/field).

The second example gave the same work done along the different
paths. If this is true for all paths: a “conservative force”.

Conservative case. In other words, the work done only depends on the
start and end points (A and B, respectively).

G ~7 T
So, we could

write ... \\ Ech : \dW = \NR"WQ
A A

where W(x,y,z) is a scalar function of space, and W;—W, is the
difference in values of W (concerning end/start points).
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One can then show | 3% ~ 3 || This gives us a means
(details in handout 2) — to test whether a
that, for F to be Yi = = ||siven Fis conservative.

conservative, Its But (i), (ii) and (iii) are
components need to

. e g just properties of a field
satisty . o - i - not just a force field ...




p31 (details in handout 2).

Are there general classes of conservative field (not just
force fields)? What about:

>

V(r) = 2—2 . any field obeying a radial, inverse-square law ?

where 7 is a physical constant
I' is distance from an origin
T is a (radial) position vector =

If we apply the test, labelled (iii) earlier, ... YES !



