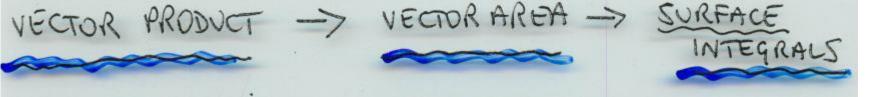
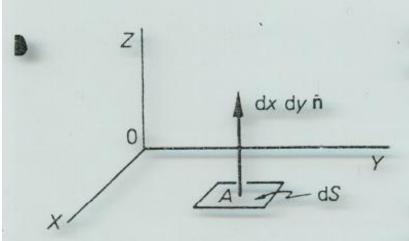
A SUMMARY / OVERVIEW OF

Handout 4 P**92**

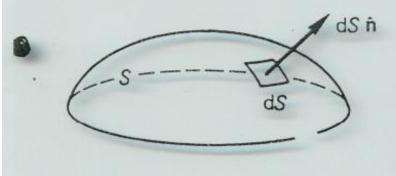
VECTOR CALCULUS (continued) Flux calculations (surface integrals like S.F.d.s) Divergence Curl - definition - physical examples · Multiple operations - grad div, divgrad, curl ourl - curlgrad, divcurl, divgrad (revisited, Laplacian, physical examples · Revision summary (so far)





If P(x, y) is a point in the xy-plane, the element of area $d\mathfrak{D}$ can be written $d\mathfrak{D} = (\mathbf{i} \, dx) \times (\mathbf{j} \, dy)$ $= dx \, dy \, \hat{\mathbf{n}}$

i.e. a vector of magnitude dx dy acting in the direction of $\hat{\mathbf{n}}$ and referred to as the vector area.



For a general surface S in space, each element of surface dS has a vector area dS such that $dS = dS \hat{n}$.

where the surface equation is S(x,y,z) = 0whose unit normals are given by \hat{n} where ...

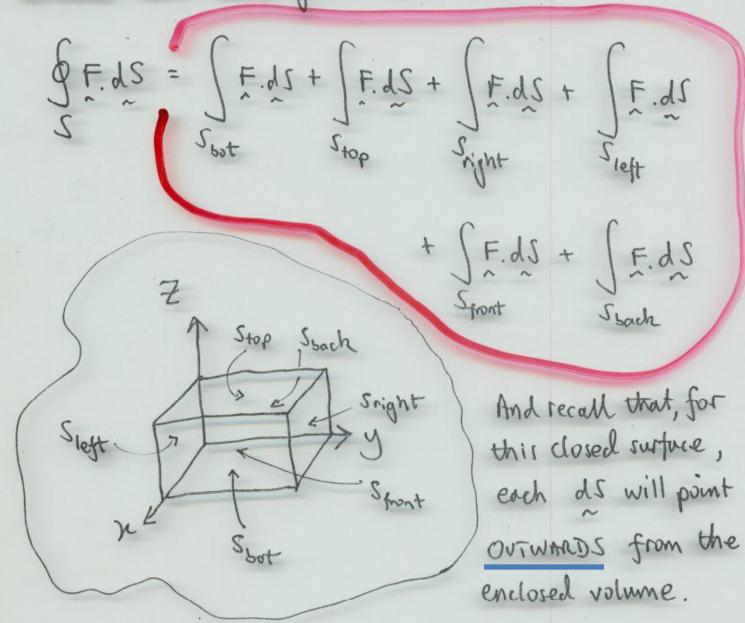
$$\hat{n} = \frac{\nabla S}{1 \nabla S}$$

A flux calculation (very long example) ...

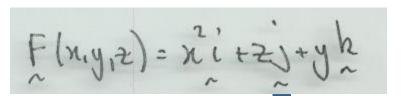
for a given vector field:

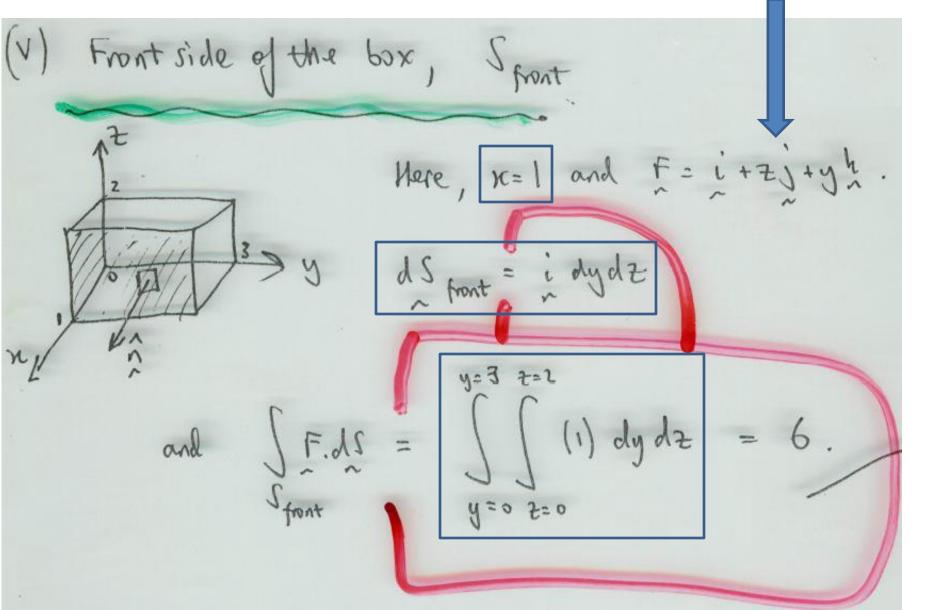
•

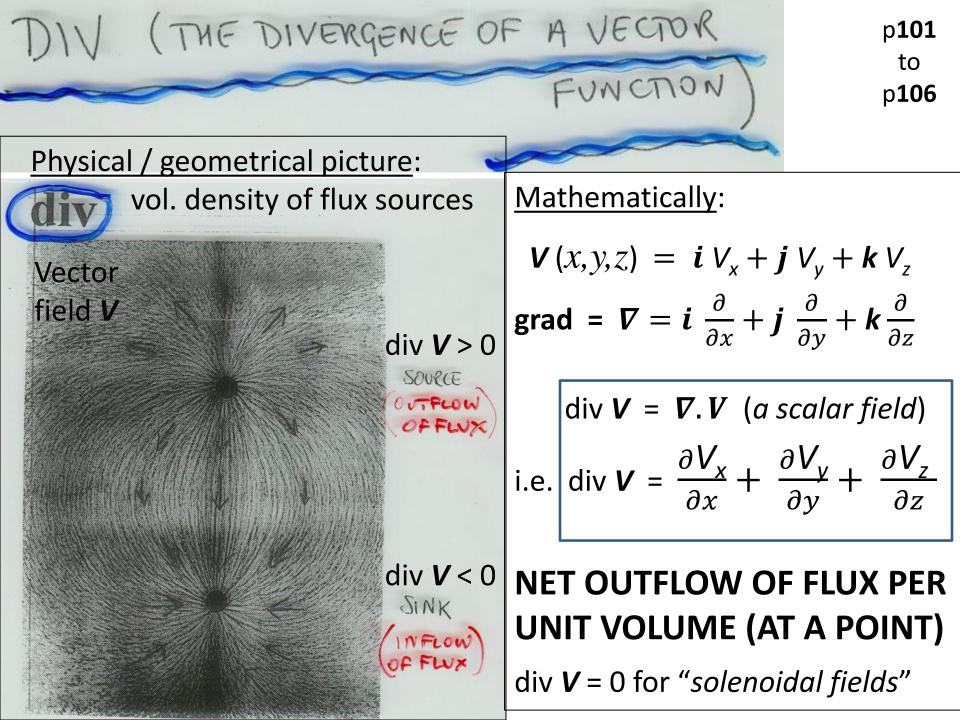
To work out the flux of F over the whole surface, consider each side of the box in turn.



Н4 р**95** top For example (considering just one of the six sides) ...





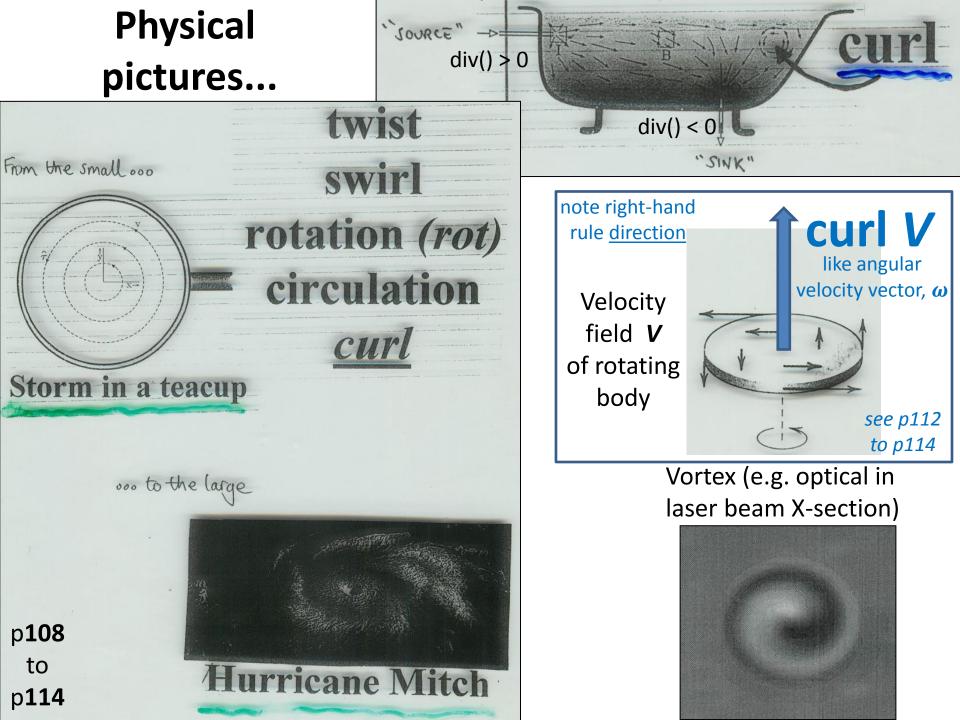


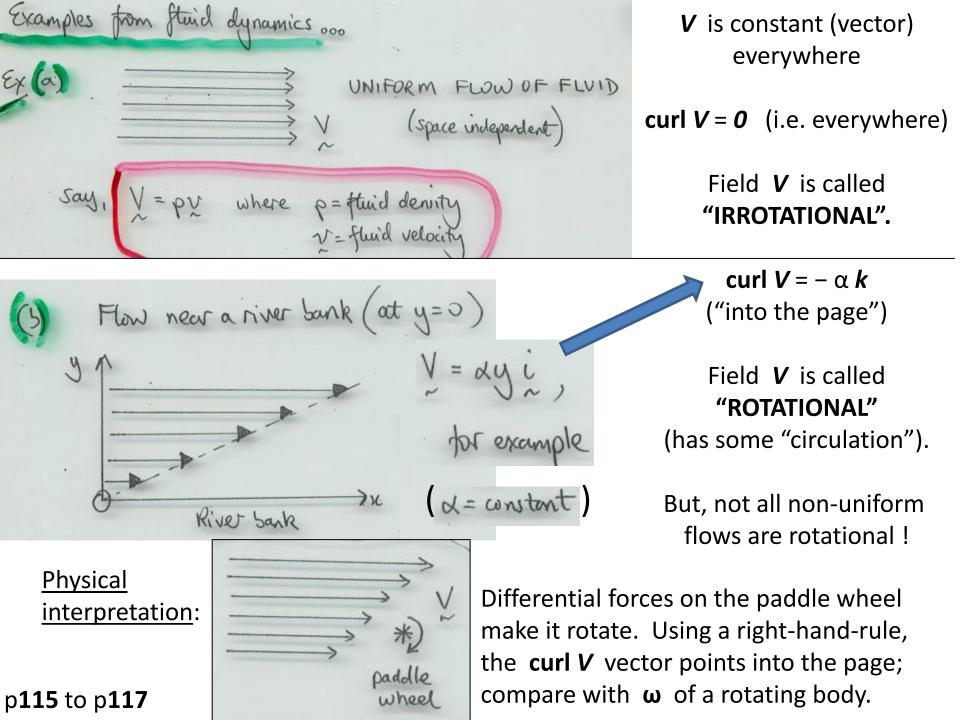
CURL (THE CURL OF A VECTOR FUNCTION)
$$p107$$

to
 $p114$
Recall that $a \times b = \begin{bmatrix} i & j & k \\ i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$ and $\nabla = i \frac{1}{2} + j \frac{1}{2} + j$

curl V (also called rot V) of a vector field V (x, y, z) = $i V_x + j V_y + k V_z$ is given by: Physical description curl V is a vector field describing direction & magnitude of: circulation, Mathematical rotation, description vorticity, twist

twist of field V(x,y,z)





p**117** to p**121**

• grad div $A = \nabla (\nabla, A)$

vector field = gradient vectors of the net flux outflow in **A**

div grad
$$\phi = \nabla \cdot (\nabla \phi)$$

• curl curl A = $\nabla \times (\nabla \times A)$

scalar field = net flux outflow of the gradient vectors of φ

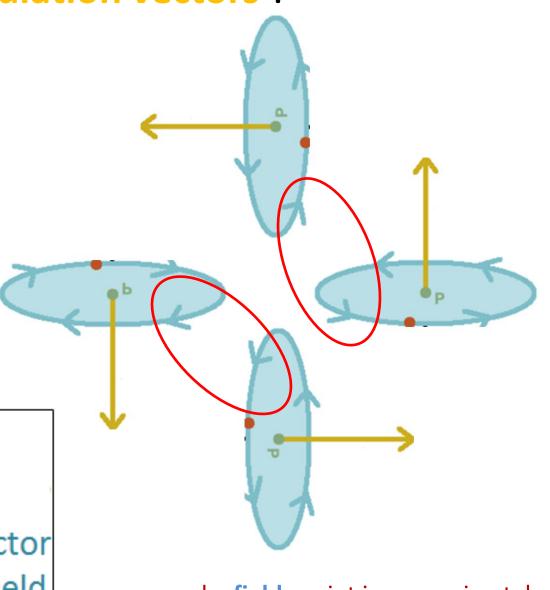
> vector field = "the circulation of the circulation of **A**"

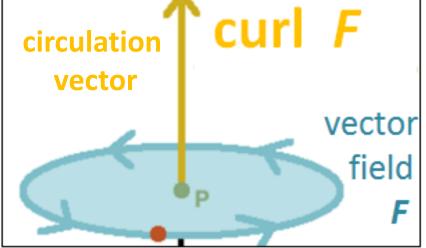
curl grad
$$\phi = \nabla \times (\nabla \phi) = 0$$

Teve FOR ANY SCALAR FIELD ϕ

Can't have circulation of gradient vectors: -> "an impossible staircase" Circulation of the circulation vectors ?

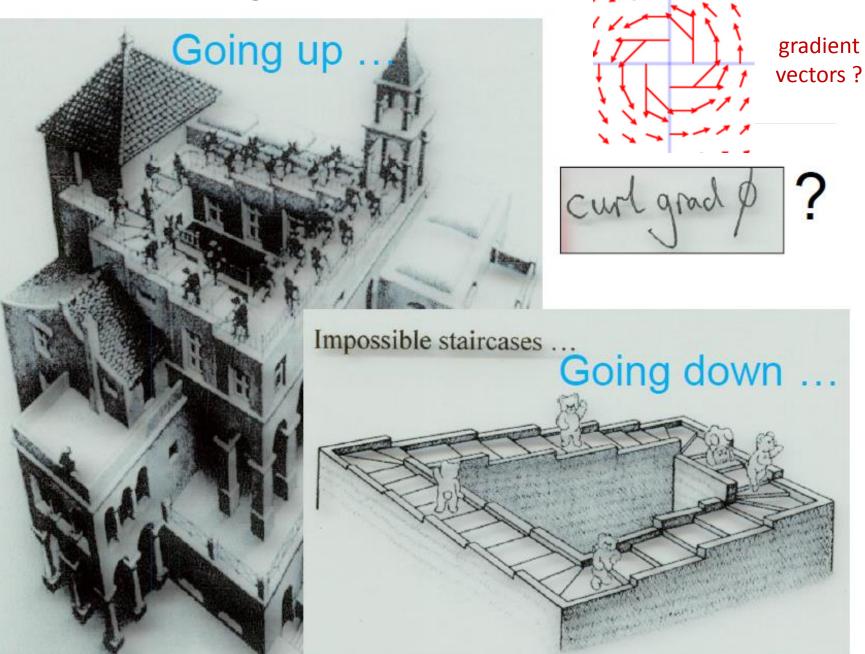
Topologically possible for a vector field **F**.

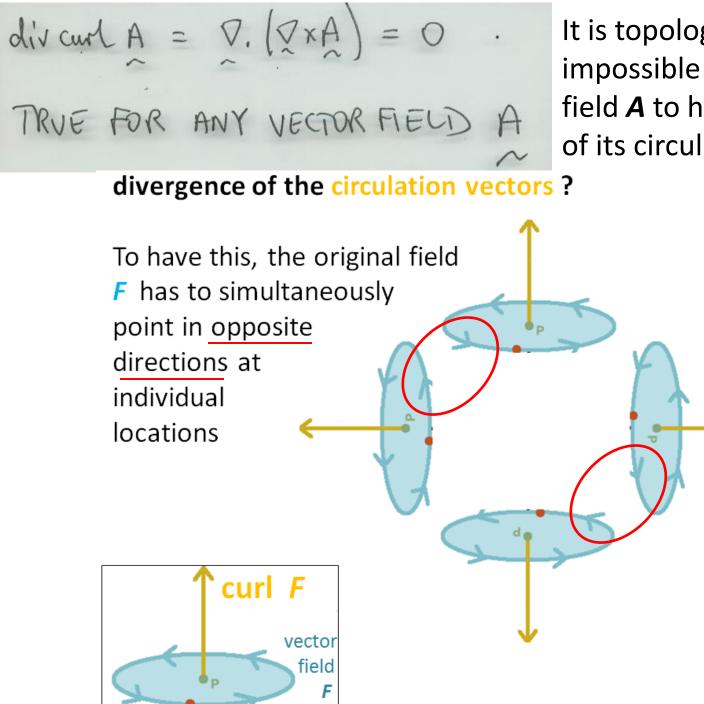




nearby **fields** point in approximately the same direction

Circulation of gradient vectors ?





It is topologically impossible for any vector field **A** to have divergence of its circulation vectors.

Let's return to the second multiple operation ...

div grad
$$\phi = \nabla \cdot (\nabla \phi)$$

scalar field = net flux outflow of the gradient vectors of ϕ

For example, this could be positive at the top of a hill in a 2D contour map. Mathematically ...

grad
$$\phi = \frac{\partial \psi_{i}}{\partial n} + \frac{\partial \psi_{i}}{\partial y} + \frac{\partial \psi_{i}}{\partial z} + \frac{\partial \psi_{i}}{\partial z}$$

div grad
$$\phi = \sum (\Sigma \phi) = \frac{\partial}{\partial x} (\frac{\partial \phi}{\partial x}) + \frac{\partial}{\partial y} (\frac{\partial \phi}{\partial y}) + \frac{\partial}{\partial z} (\frac{\partial \phi}{\partial z})$$

So ...

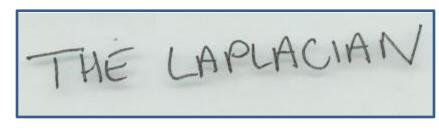
div grad
$$\phi = \nabla \cdot (\nabla \phi) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$

p**123**

div grad \$ = V.

This has its own <u>symbol</u> ... ∇^2 and its own <u>name</u> ...

 $=\frac{\partial^2}{\partial y^2}+\frac{\partial}{\partial y^2}$



As it's a scalar operator, it can act on either scalar or vector fields:

And, it appears in very many standard model equations (more examples in the notes):

$$\nabla^2 \phi = 0$$

$$\nabla^2 \phi = \frac{1}{2^2} \frac{3^2 \phi}{3^2}$$

$$\nabla^2 \phi = \frac{1}{2^2} \frac{3^2 \phi}{3^2}$$

$$\nabla^2 \phi = \frac{1}{2^2} \frac{3^2 \phi}{3^2}$$

p**123** to p**127** Finally, a couple of extra results appearing in the end summary ...

