SUMMARY / OVERVIEW OF ...

Mathematical Methods and Applications

Recall from p123,

 $= \nabla \cdot \left[\nabla \phi \right] = \frac{\partial^2 \phi}{\partial 2} + \frac{\partial^2}{\partial 2}$ div grad &

and that we can write this operation on scalar field φ using notation for a new operator:

= 7.7

The Laplacian appears in many important model equations such as in Poisson's equation:

and in the wave equation:

We explore this connection next ...

Referring back to p61, dealing with the vector triple product, the following **vector identities** were used:

In the first identity, if we replace **c** with a vector field **V** and both **a** and **b** with **V** we get:

or, in words:

This result is proved directly in the main notes.

In cases where the first term on the right-hand-side is zero, we can make the following useful direct substitution:

$$a \times (b \times c) = (a, c) - (a, b) c$$

 $(a \times b) \times c = (a, c) - (b, c) a$
 $(a \times b) \times c = (a, c) - (b, c) a$

$$\nabla \times (\nabla \times V) = \nabla (\nabla \cdot V) - \nabla V$$

 $\omega \wedge (\omega \wedge V) = grad div V - Laplacian V$

$$audaud V = -Laplacian V$$
 p134
to p137

The **HEADLINE TOPIC** of Handout 5 is below.

H5 p**137** to p**144**

Key features here are:

• Relating vol. integral to a closed surface integral

• RHS is total flux of **F** through closed surface *S*

 div F is then a volume density of sources and sinks of flux, as RHS can be non-zero

• The theorem can be used to derive Gauss' flux law in differential form from the integral form

Some **overarching themes** of Handouts 5 and 6 are:

- Introducing Maxwell's Equations (*in the simplest notation only*)
- Thereby providing the simplest examples of the roles of div and **curl** in a physical system
- And interpretations/pictures of what div and **curl** can mean.

As in other physical laws, Maxwell's equations have **two different** general forms: *differential* (at a point) and *integral* (over region of space)

We want to complete the following "questions"

<u>Differential Form</u>	<u>Integral Form</u>
$\nabla . E = ?$?
$\nabla B = ?$?
$\nabla \times E = ?$?
$\nabla \times B = ?$?

H5 p**142** to p**144**

where **E** and **B** are electric and magnetic fields, respectively.

Considering a static charge Q inside a surface S and the flux of the electric field **E** over S,

we derive Gauss's flux law in integral form:

Q > 0 gives a net outflow of *E*-flux through *S*

Using the Divergence Theorem, one can then derive **Gauss's flux law in differential form**:

> This allows us to complete the first line of unknowns in our Maxwell's equations table:

Introducing charge (volume) density ρ, identifies div **E** as the volume density of sources and sinks of **E**-flux

<u>Differential Form</u>	<u>Integral Form</u>
$\nabla E = ?$?
$\nabla B = ?$?
$\nabla \times E = ?$?
$\nabla \times B = ?$?

H5 p**142** to p**144**

Differential Form

$$V. E = 2$$

 $V. B = ?$
 $V. B = ?$

div B = O

Differential Form

••••

S

Applieddai of the divergence theorem in hychodynamics...

$$Y = velouty of fluid particles$$

 $p(x, y, z) = density of fluid (mass)
 $bg = rate of universe of density
 $bf = rate of universe of density
But divergence
theorem tells us that:
 $\int div (px) = -\partial p$
(mass conservation)
at each point.
 $div (px) = -\partial p$
 $bf = rate of universe of density
 $f = rate of universe of density$
 $f = rate of universe of density
 $f = rate of universe of density$
 $f = rate of universe of universe of density$
 $f = rate of universe of density$$$$$$

Finally, we looked at two examples of vector calculus integrals that we have not yet dealt with ...

> H5 p**154**

For the <u>first type</u>, we can write:

To demonstrate another aspect, we looked at *parametric representation of the curve C*.

$$\int \phi dr = \int \phi \left(i dx + j dy + k dz \right)$$
$$= i \int \phi dx + j \int \phi dy + k \int \phi dz$$

Then, we re-write everything: ϕ , dx, dy, dz and integral limits only in terms of that new parameter (we used parameter u).

For the second type, we can write:

Again, to demonstrate another aspect, we looked at *transforming the*

$$\int \phi dS = \int \phi \hat{n} dS$$
,
where $\hat{n} = \frac{\nabla S}{|\nabla S|}$, i.e. unit normal to
 $|\nabla S|$ the surface

integral from Cartesian (x, y, z) coordinates to cylindrical coordinates (ρ , θ , z). H5 p**154** to p**155**