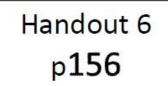
SUMMARY / OVERVIEW OF ...

Mathematical Methods and Applications



= VECTOR CALCULUS (concluded)

Stoke's Theorem

proof

- applications

Conservative Fields - Revisited

= the five equivalent conditions

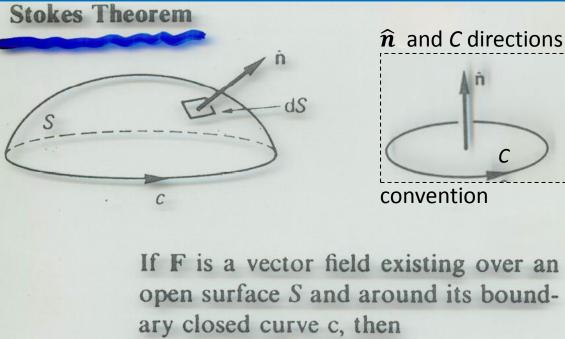
examples of conservative fields

then ...

· Examples of solenoidal fields zero divergence everywhere)

Alternative space coordinate systems (reference material)

HEADLINE TOPIC OF HANDOUT 6



where

$$\int_{S} \operatorname{curl} \mathbf{F}_{\bullet} \mathbf{dS} = \oint_{c} \mathbf{F}_{\bullet} \mathbf{dr}$$

OF. dr is called THE CIRCULATION

OF F AROUND THE

CURVE C.

Key Features

- Relationship between
 (flux of) curl F and
 "circulation" / rotation
- Relates open surface integral to closed line integral (bounding curve)
- Can transform between integral and differential forms of physical laws
 - Applies to **any** surface *S* with the same bounding curve *C*

H6 p**157** to p**168**

Maxwell's Equations (simple form)

<u>Differential Form</u>	Integral Form]
$\nabla \cdot E = \frac{\rho}{\epsilon_0}$	$\oint_{S} \mathbf{E} \cdot \mathbf{dS} = \frac{Q}{\varepsilon_0}$	
$\nabla \cdot B = 0$	$\oint_{C} \boldsymbol{B} \cdot \boldsymbol{dS} = 0$	
Now	23	
$\nabla \times E = ?$?	
$\nabla \times B = ?$?	

where **E** and **B** are electric and magnetic fields, respectively,

 ρ is charge (volume) density, and Q is total charge.

The circuital law,

$$\oint_{C} E.dl = -\partial_{T} \overline{E} = -\partial_{T} \int_{S} B.dS$$

 $= \int_{C} (\overline{X} \times E) \cdot dS = -\partial_{T} \int_{S} B.dS$
 $s = -\partial_{T} \int_{S} B.dS$
 $\nabla \times E = -\partial_{E} \int_{S} B.dS$

Integral Form

φ is total flux of **B**-field through surface S with bounding curve C

(using Stokes Theorem)

Differential Form

Maxwell-Faraday equation

Maxwell's Equations (simple form)

Differential Form	Integral Form
$\nabla \cdot E = \frac{\rho}{\epsilon_0}$	$\oint_{S} \mathbf{E} \cdot \mathbf{dS} = \frac{Q}{\varepsilon_0}$
$\nabla \cdot B = 0$	$\oint_{S} \boldsymbol{B} \cdot \boldsymbol{dS} = 0$
$\boldsymbol{\nabla} \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$	$\oint_C \mathbf{E} \cdot \mathbf{d} \mathbf{l} = -\frac{\partial \phi}{\partial t}$
Now	
$\nabla \times B = ?$?

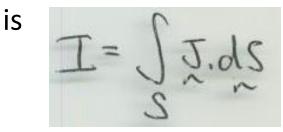
where E / B are electric / magnetic fields, ρ is charge (volume) density, Q is total charge, t is time, and ϕ is B-flux in curve C.

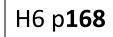
Ampère's Law

Differential Form

Calculate flux through surface S of both sides of the above equation. Recall total current *I* in terms of *J* (for RHS), and use Stokes Theorem (for LHS):

J is electric current density (see page 92), whereby total current I





Maxwell's Equations (simple form)

Differential Form	Integral Form
$\nabla \cdot E = \frac{\rho}{\epsilon_0}$	$\oint_{S} \mathbf{E} \cdot \mathbf{dS} = \frac{Q}{\varepsilon_{0}}$
$\nabla \cdot B = 0$	$\oint_{S} \boldsymbol{B} \cdot \boldsymbol{dS} = 0$
$\boldsymbol{\nabla} \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$	$\oint_C E.dr = -\frac{\partial \phi}{\partial t}$
$\boldsymbol{\nabla} \times \boldsymbol{B} = \mu_0 \boldsymbol{J}$	$\oint_C \boldsymbol{B} \cdot \boldsymbol{dr} = \mu_0 \boldsymbol{I}$

where E / B are electric / magnetic fields, ρ is charge (volume) density, Q is total charge, t is time, ϕ is B-flux within curve C, J is electric current density, and I is total current passing through C.

[More details are in the full presentations and handouts!]

Conservative Fields - Revisited
Earlier, we obtained three equivalent conditions
pr a vector field V to be conservative.
These were ... (I) • the existence of a scalar potential
$$p(x,y,z)$$

such that $\int_{A}^{B} V dr = \int_{B}^{B} d p = p_{B} - p_{A}$
[path independence]
(II) • for $V dr = d p = V_{x} dx + V_{y} dy + V_{z} dz$
[$X dr = d p$, an exact differential]
(III) • the reciposity relations : $\frac{\partial V_{x}}{\partial y} = \frac{\partial V_{x}}{\partial z} = \frac{\partial V_{z}}{\partial x}$

Two more conditions

Firstly,
note that if
$$V = (V_x, V_y, V_z)$$
 then
 $\nabla \times V = \begin{bmatrix} v & y & k \\ y & y & y \\ y_x & y & y_z \end{bmatrix}$
 $V_x & V_y & V_z \end{bmatrix}$
i.e. $\nabla \times V = v \begin{bmatrix} \frac{1}{2}V_z - \frac{1}{2}V_y \\ \frac{1}{2}V_z - \frac{1}{2}V_y \end{bmatrix} - v \begin{bmatrix} \frac{1}{2}V_z - \frac{1}{2}V_n \\ \frac{1}{2}V_z - \frac{1}{2}V_z \end{bmatrix}$

If the following is true (the reciprocity relations):

then we simply have that:

H6

dry; dr = dr and

V is conservative

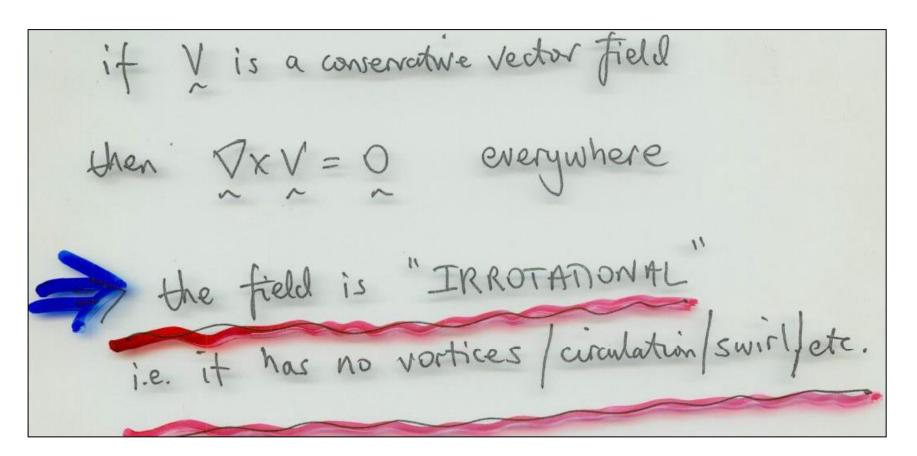
i.e. a concise test for whether vector field **V** is conservative

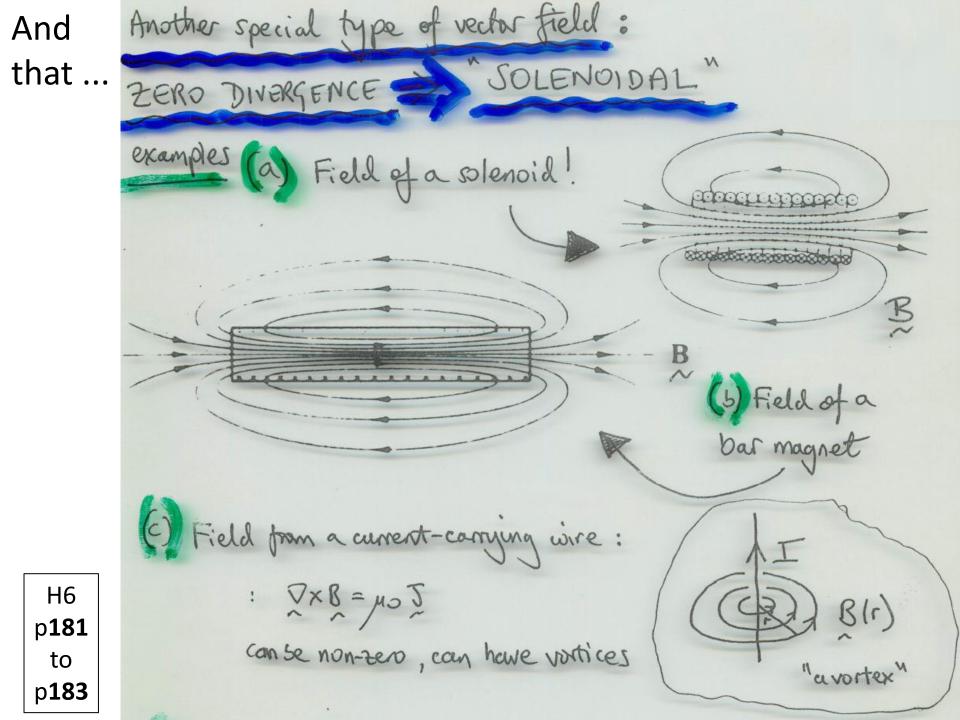
Last
condition
Secondly, note condition in requiring
$$d \neq$$

to be an exact differential implies that
 $d \phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$.
But this is just the dot product of $\forall \phi = \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial z}$
and $dr = \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial z} + \frac{\partial \phi}{\partial z}$
i.e. $d \phi = \forall \phi \cdot dr$ but condition is: $\int_{A}^{B} \sqrt{dr} = \int_{A}^{B} d\phi$
so ... If we can write a vector field \sqrt{as}
 $\sqrt{1 = \forall \phi}$, where ϕ is a scalar field,
then $\sqrt{1}$ is a conservative field.
That gives us FIVE
conditions in total.

S

Note that ...





H6 p**184** to p**189**

Space coordinate systems

 Cylindrical coordinates
$$(r, \theta, z)$$
 $x = r \cos \theta;$
 $r = \sqrt{x^2 + y^2}$
 $y = r \sin \theta;$
 $\theta = \arctan(y/x)$
 $z = z;$
 $z = z$

$$Z$$

$$P(r, \theta, z)$$

$$I$$

$$P(r, \theta, z)$$

$$V$$

$$P(r, \theta, z)$$

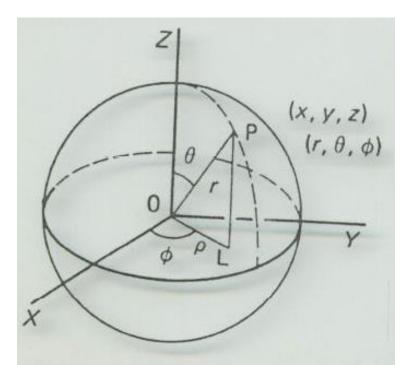
$$V$$

Spherical coordinates
$$(r, \theta, \phi)$$

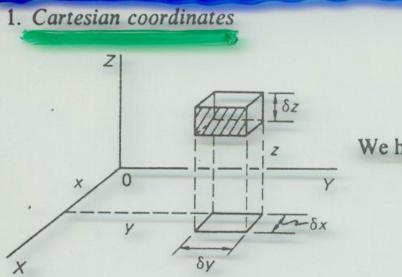
 $x = r \sin \theta \cos \phi$ $r = \sqrt{x^2 + y^2 + z^2}$
 $y = r \sin \theta \sin \phi$ $\theta = \arccos (z/r)$
 $\mathcal{I} = r \cos \theta$ $\phi = \arctan (y/x)$
 $\left(\underbrace{NR} P = \Gamma \sin \Theta \right)$

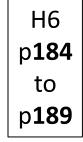
4

.



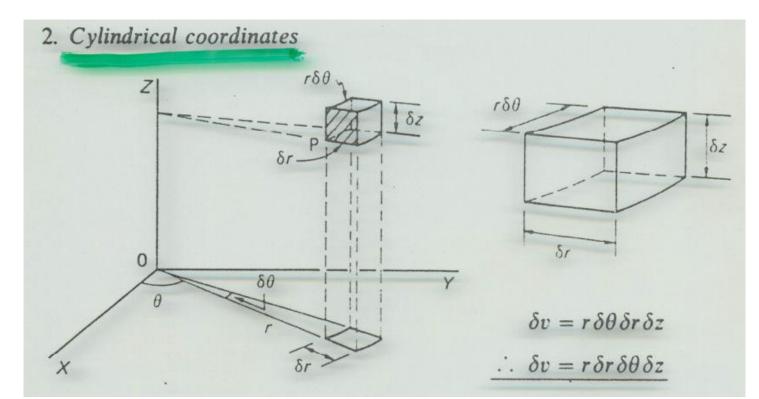
Element of volume in space in the three coordinate systems

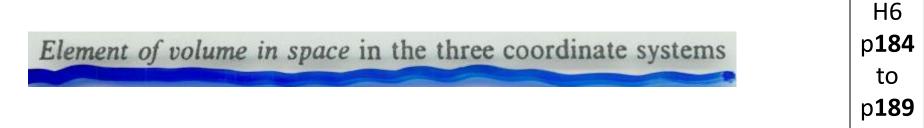


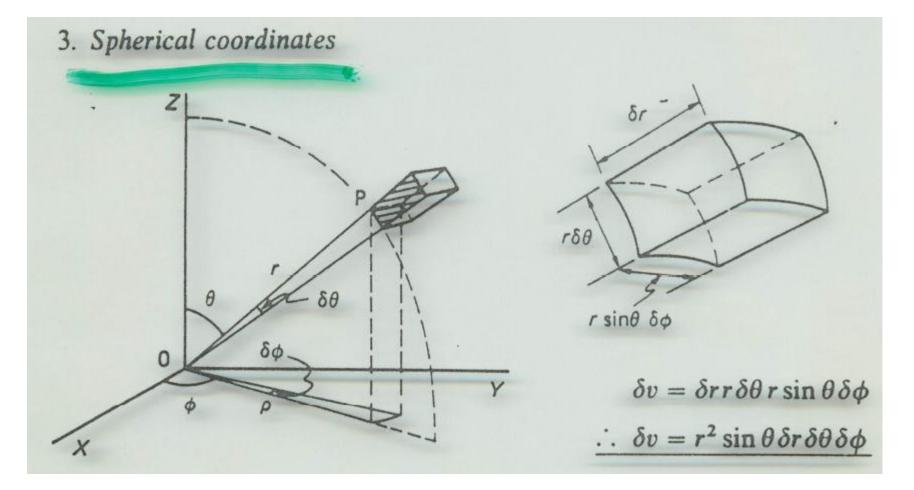


We have already used this many times.

 $\delta v = \delta x \delta y \delta z$







H6 UNIT BASIS VEGORS p184 to Courtesian en = i = x 7 p**189** ey = j = ý ez= h= 2 x in direction of unereasing) x,y, z Cylindrical --- -0- -2-= = = = pê(tangential) i î (radial) 0 n (in direction of increasing r, O, Z)

H6 p**184** UNIT BASIS VEGORS to p**189** CrEr Spherical Z $e_0 = \hat{0}$ Polar Co = p P angle 0 X (in direction of increasing r, O, D)

ontribuordin contribution coordinante professio	H6 p 184 to
• Cartesian coordinates (x, y, z) $\mathbf{e}_x \equiv \mathbf{i}, \mathbf{e}_y \equiv \mathbf{j}, \mathbf{e}_z \equiv \mathbf{k}$	p 189
$(\operatorname{grad} f)_{1} = \frac{\partial f}{\partial \mathbf{x}} \operatorname{div} \mathbf{A} = \frac{\partial A_{1}}{\partial x} + \frac{\partial A_{2}}{\partial y} + \frac{\partial A_{3}}{\partial z}$	
$(\operatorname{grad} f)_2 = \frac{\partial f}{\partial y} (\operatorname{curl} \mathbf{A})_1 = \frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z}$	
$(\operatorname{grad} f)_3 = \frac{\partial f}{\partial z}$ $(\operatorname{curl} \mathbf{A})_2 = \frac{\partial A_1}{\partial z} - \frac{\partial A_3}{\partial x}$ $(\operatorname{curl} \mathbf{A})_3 = \frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y}$	
$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$	

• cylindrical polar coordinates (r, θ, z)

 $x = r \cos \theta, \quad y = r \sin \theta, \quad z = z$ $\mathbf{e}_r = \cos \theta \mathbf{i} + \sin \theta \mathbf{j}, \quad \mathbf{e}_{\theta} = -\sin \theta \mathbf{i} + \cos \theta \mathbf{j}, \quad \mathbf{e}_z = \mathbf{k}$ $\mathbf{A} = A_r \mathbf{e}_r + A_{\theta} \mathbf{e}_{\theta} + A_z \mathbf{e}_z$

$$(\operatorname{grad} f)_r = \frac{\partial f}{\partial r}$$
$$(\operatorname{grad} f)_{\theta} = \frac{1}{r} \frac{\partial f}{\partial \theta}$$
$$(\operatorname{grad} f)_z = \frac{\partial f}{\partial z}$$

$$A_{r} \mathbf{e}_{r} + A_{\theta} \mathbf{e}_{\theta} + A_{z} \mathbf{e}_{z}$$

$$\operatorname{div} \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_{r}) + \frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_{z}}{\partial z}$$

$$(\operatorname{curl} \mathbf{A})_{r} = \frac{1}{r} \frac{\partial A_{z}}{\partial \theta} - \frac{\partial A_{\theta}}{\partial z}$$

$$(\operatorname{curl} \mathbf{A})_{\theta} = \frac{\partial A_{r}}{\partial z} - \frac{\partial A_{z}}{\partial r}$$

$$(\operatorname{curl} \mathbf{A})_{z} = \frac{1}{r} \frac{\partial}{\partial r} (rA_{\theta}) - \frac{1}{r} \frac{\partial A_{r}}{\partial \theta}$$

 $\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$

H6 p**184** to p**189**

• spherical polar coordinates
$$(r, \theta, \phi)$$

 $(\operatorname{grad} f)_r = \frac{\partial f}{\partial r}$
 $(\operatorname{grad} f)_{\theta} = \frac{1}{r} \frac{\partial f}{\partial \theta}$
 $(\operatorname{grad} f)_{\theta} = \frac{1}{r} \frac{\partial f}{\partial \theta}$
 $\operatorname{div} \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$
 $(\operatorname{curl} \mathbf{A})_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\theta}) - \frac{1}{r \sin \theta} \frac{\partial A_{\theta}}{\partial \phi}$
 $(\operatorname{curl} \mathbf{A})_{\theta} = \frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r \partial r} (r A_{\phi})$
 $(\operatorname{curl} \mathbf{A})_{\theta} = \frac{1}{r} \frac{\partial}{\partial r} (r A_{\theta}) - \frac{1}{r \partial \theta} \frac{\partial A_r}{\partial \theta}$
 $\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial f}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial f}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$

H6 p**184** to p**189**

 $A_{\phi} \mathbf{e}_{\phi}$