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Mathematical Methods and Applications
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/m RANK of & mabrix s

We need a means to determlne parameter M (the number of
independent equations). For this, we introduce a measure called

the RANK OF A MATRIX. As seen earlier, the existence and number of
solutions depends not only on the coefficient matrix A. We will also
need to use the information given by the right-hand-side (constants)

vector D .

Definition. The RANK I’ of a matrix is the size of the largest non-zero
determinant that can be found from its elements (in the order that they
appear in the matrix). In other words, rank r implies at least one square
sub-matrix with r rows and non-zero determinant, while any square
sub-matrix with r+1 rows would have zero determinant.




Some examples ...
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If all 2x2 sub-matrices have zero determinant, then we need at least

one non-zero element for the matrix to have rank r = 1, otherwise it
will have r =0. Note that a 1x1 matrix has determinant equal to the

element value (which can be positive, negative, or zero). "
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Application of rank to the solution of simultaneous equations

System « Au % *q“’ﬁ + A = b, can be written as:
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then, one defines an AUGMENTED COEFFICIENT MATRIX:
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In the notes, we compare rank(A), rank(A,) and N (the number of
unknowns) for our five main 2x2 systems, and find only three distinct

cases.

We then conject that this is a general result when A is an NxN matrix ...



((A) = rank(A,) =N = UNIQUE SOLUTION
((A) = rank(A,) <N = INFINITE NUMBER OF SOLUTIONS

K(A) < rank(A,) = NO SOLUTION
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We considered solving our five main 2x2 systems in A, format and using

the following ELEMENTARY
ROW OPERATIONS:

The scheme we used to solve
the equations involved a first
stage of reducing A, to

ECHELON (“staircase”) FORM.
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We used elementary row operations to reduce A, to a matrix with only
zeroes below the main diagonal, to see what patterns emerged for the

different systems.



For inhomogeneous with a unique solution H3
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For inhomogeneous with an infinite number of solutions

T T
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For inhomogeneous with no solution
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Echelon form shows us the number of independent rows in A.



We can now consider these results in relation to rank(A), rank(A,) and N

When "w\\’{ (ﬁ}: W\,\l (AQ = \ -

we have m = n linearly independent equations 0 ;_1 ‘1/
and a unique solution. ¢ Eemmmewew

When | fank (#)= rank ()

also true for this case ...

we have consistency. Note that the number of T T
non-zero rows of A, in echelon form equals m B =i
(the number of linearly independent equations). 0 § O_ O
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we have m < n linearly independent equations and o
an infinite number of solutions (as in the second example above). | 245




Finally ...

when |fank (@) < FMUAb\

we have inconsistency. The number of non-zero
rows of A is less than the number of non-zero rows
of Ab (when the system is in echelon form).
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V,,V,,..,V, are linearly dependent if their linear combination
a,V,+a,V, +... a vV, =0 for some numbers a, not all zero.

V,,V,,..,V, are linearly independent if their linear combination

cannot be set to 0 without assuming all a; are zero.
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Considering linear combinations of independent vectors
in space, such as: ;- y £ £2M
~ A~ ~ A~

—ee
For a given set of vectors, one can find how many are linearly
independent by putting them as matrix rows and performing a
reduction of the matrix to echelon form. There, note that:

the number of non-zero rows of the matrix in echelon form
= the number of linearly independent rows / vectors

= the rank of that matrix

H8
p247

to
p250




(/W\Qr/f T_V\O[Q()wdwce. QA\\AA*'WM g
oé e p250
V oS bot

wadv:w\.s @

N

Luneor () degendence TW‘W s dgfined i Ve swme
on - Ful\oho\i\.\ "S‘.(“),’f\,h\,»-,f\‘.\ln\ are. L..,:Q“(j M “1—

Some. neas combunabion qff hem 15 gero

\e. Q\\:ﬁ(x\-\- q,_{'\("x) T q,\.ﬁq = O

ﬁm\Q PMUARSS Q\,Ql'---,q'\ not cdk'bw .



