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We need a means to determine parameter  m  (the number of  
independent equations).  For this, we introduce a measure called 
the RANK OF A MATRIX. As seen earlier, the existence and number of  
solutions depends not only on the coefficient matrix A.  We will also  
need to use the information given by the right-hand-side (constants)  

vector  b . 
 

Definition.  The RANK  r  of a matrix is the size of the largest non-zero 
determinant that can be found from its elements (in the order that they 
appear in the matrix). In other words, rank r implies at least one square 
sub-matrix with r rows and non-zero determinant, while any square  
sub-matrix with r+1 rows would have zero determinant. 
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Some examples ... 
 

● 
 
 

 
 
 
● 
 
 

 
●   If all 2x2 sub-matrices have zero determinant, then we need at least 
      one non-zero element for the matrix to have rank  r = 1, otherwise it 
      will have  r = 0.  Note that a 1x1 matrix has determinant equal to the 
      element value (which can be positive, negative, or zero). 
 



Application of rank to the solution of simultaneous equations 
 

System                                                                 can be written as: 
 
 
 
then, one defines an AUGMENTED COEFFICIENT MATRIX: 
 

                                                                combining  A  and  b , 
                                                                and thus capturing all 
                                                                the system information. 
 

In the notes, we compare rank(A), rank(Ab) and n (the number of  
unknowns) for our five main 2x2 systems, and find only three distinct 
cases. 
 

We then conject that this is a general result when A  is an  nxn matrix ...  
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●  rank(A) = rank(Ab) = n     UNIQUE SOLUTION 

●  rank(A) = rank(Ab) < n     INFINITE NUMBER OF SOLUTIONS 

●  rank(A) < rank(Ab)            NO SOLUTION 
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We considered solving our five main 2x2 systems in Ab format and using  
the following  ELEMENTARY  
                     ROW OPERATIONS: 
 
 The scheme we used to solve 
 the equations involved a first 
 stage of reducing Ab to  
 ECHELON (“staircase”) FORM. 
 
 We used elementary row operations to reduce Ab to a matrix with only 
 zeroes below the main diagonal, to see what patterns emerged for the 
 different systems. 
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For inhomogeneous with a unique solution 
 
 
 
 
For inhomogeneous with an infinite number of solutions 
 
 

 
For inhomogeneous with no solution 
 
 
 
 
 
      Echelon form shows us the number of independent rows in A. 
 

− − no zero rows in A 

an inconsistency 

eliminated equation 



We can now consider these results in relation to rank(A), rank(Ab) and n  
 

When 
 
we have  m = n linearly independent equations 
                 and a unique solution. 
 
When   
 
we have consistency.  Note that the number of  
non-zero rows of Ab in echelon form equals  m   
(the number of linearly independent equations).   
 
But when  
 
we have  m < n linearly independent equations and 
an infinite number of solutions (as in the second example above). 
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also true for this case ... 
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Finally ... 
 
When 
 
we have inconsistency.  The number of non-zero 
rows of A is less than the number of non-zero rows  
of Ab (when the system is in echelon form).  
 
 
 
 
 

v1 , v2 , ... , vn   are  linearly dependent if their linear combination 

a1v1 + a2v2 + ...  anvn = 0  for some numbers ai not all zero. 
 

v1 , v2 , ... , vn   are  linearly independent if their linear combination 
cannot be set to 0 without assuming all ai are zero. 
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Considering linear combinations of independent vectors  
in space, such as: 
 
 
 
 
 
 
 
 

For a given set of vectors, one can find how many are linearly  
independent by putting them as matrix rows and performing a  
reduction of the matrix to echelon form. There, note that: 
 
     the number of non-zero rows of the matrix in echelon form 
=   the number of linearly independent rows / vectors 
=   the rank of that matrix 




