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All-optical switching in a nonlinear resonator
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Abstract . In this paper we consider some features of all-optical switching in a
unidirectional ring cavity which is partially filled with a fast and saturably
nonlinear medium . A comparative study of cross-talk for both signs of
nonlinearity, in a two pixel (whole-beam switching) configuration, is made . A
particular interaction modulation is discovered for two beams in the self-
defocusing case . For self-focusing media, results are extended by consideration of
large (part-beam switched) solitary arrays . Prescribed binary patterns may be
stably encoded in a single cavity transit which is in sharp contrast to the hundreds
of transits required for spontaneous stabilisation . These patterns are seen to be
stable over thousands of transits .

1 . Introduction
Our research is part of a global initiative to tackle a profound leap from the

oversimplified, but instructive, plane wave analyses of nonlinear optical pheno-
menon to the real world of (finite width) optical beams making accumulative
nonlinear interactions with matter . Recent research concerning all-optical switching
has mainly involved the Kerr effects in nonlinear interferometers (NLI) and in
nonlinear couplers (NLC) . Switching of soliton-like pulses in both the NLI and
NLC has only very recently been considered [1-5] . In these cases low energy, high
contrast and stable switching have suggested solitons as the natural `bits' for optical
information processing. Here we shall investigate the suitability of `bistable' spatial
solitary waves as pixels in a transverse binary array .

2 . Theory
In this work we closely follow the scheme and notation of Moloney and co-

workers [6] . The complex field, G„(x, z), during its nth transit through our medium
may be described by a nonlinear Schrodinger-type evolution equation :

z
2i aa""+p 0x2°+N(IG.1 2)G.=0.

	

(1)

We have concentrated on the planar waveguide case where the diffraction
Laplacian reduces to an operator in one Cartesian dimension . The cavity boundary
conditions complete a full transverse, and indeed infinite-dimensional, generaliz-
ation of that considered by Ikeda [7]

G„ + 1 (x, 0) = A(x) + R exp (40) G„ (x, p) .

	

(2)

We shall make the assumption that the pump field, denoted A(x), is detuned at
least by a few homogeneous linewidths from the two-level atom resonance . Our
nonlinearity is therefore dispersive in nature, N(IG„1 2 )= - 1 /(1 + 2IG,,I 2 ) . The scaling
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Figure 1 . Our optical resonator, partially filled (LR=O .3) with a nonlinear medium . The
laser beam enters through M 1 which, like M 2 , has an intensity reflectivity of R=0 .9 .
Output through M 2 is monitored .

of the propagation and transverse dimensions (see figure 1) are such that we deal with
an effective medium length,p=a0L 1/d, and our (beam) Fresnel number, F, is scaled
into y=ln2/(4ttF). Cavity parameters 0o,d and ao are the (scaled) mistuning,
detuning and linear absorption coefficients respectively .

We normally allow for the medium to fill only part of the cavity ; performing
linear lossless propagation in the remainder . In the simulations presented an
integration is firstly performed to the output mirror, M 2 , to allow data collection
before completing the resonator circuit . In all cases p=2,1 and 0o=0.4r1, where
r1= ± 1 for self-focusing and self-defocusing media respectively. Integrations within
the medium are performed using the efficient split-step Fourier operator method [8] .

To effect memory we may need to spatially modulate the medium or the input
light or both . Medium pixellation leads to rather involved considerations, as can be
illustrated by particular examples cited from the physics of nonlinear interference
filters, where both analytic [9] and experimental [10] work has been performed . In
the light of this, we shall examine pixellation through spatial modulation of only the
pump field. Our work therefore broadly follows on from publications which dealt
with bistable arrays induced in a nonlinear Fabry-Perot [11] . Those studies
modelled the specific physics of InSb etalons where diffusive coupling has been seen
to be the dominant transverse effect [12] . Here we shall study the case of dominantly
diffractive coupling and seek to establish device prospects and limitations for this
kind of interpixel cross-talk .
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Neglecting diffraction allows much analytic progress to be made, whereas its
inclusion results in a relatively intractable system for which full numerical
simulations are necessary . It is hoped that, in the self-focusing case, the attracting
nonlinear basis (solitary waves) will simplify the spatial complexity to consideration
of only these (natural) nonlinear cavity modes . Drawing an analogy between
diffusion length and an equivalent `diffraction length', we may expect coupling to be
essentially short-ranged (nearest-neighbour) as in the diffusive case [11, 13] . This
argument is strengthened if we recall the exponential decay of interaction force, with
separation, found for exact soliton solutions of the nonlinear Schrodinger equation
[14] . The case of longer-ranged interaction forces arise in thermal cross-talk, such as
in nonlinear interference filters [15], and is manifest through a `1 /r' dependence of
interpixel coupling constants .

Nearest-neighbour interaction allows for a preliminary study of two-beam
coupling. Such a study has already been performed on a similar system considering a
single low Fresnel number [16] . Here we present results from a two-beam coupling
investigation for both signs of nonlinearity and in a model which neglects saturable
absorption, which generalizes that work and provides necessary underpinning for
our array studies .

3 . Results and discussion

3 .1 . Two-beam coupling
For parallel operation of two all-optical switches on the same etalon, we choose to

work with a low Fresnel number (F= 1) and hence within the whole-beam switching
regime [17] . The chosen form of A(x, t) in this case is

A(x, t)=a01 exp [-(x-x1)2]+a02(t) exp [-(x+x1)2+iAf] .

	

(3)

Our hold beam separation will be referenced in units of intensity f .w.h.m. so we
define XO =[(2/ln 2)] 1/2 x 1 . Temporally, both beams are held at a working point, aH ,
while a02 (t) encompasses an additional square pulse, of amplitude as -aH, on the left
beam. These amplitudes are parameterized around the peak input amplitudes of up-
and down-switching (a A and a v respectively) and are taken as

aH =av +cH(aA -av),

a s = csaH .
(4)

In this system, cH =0 .75 and c s=1.5 supply safe hold points, free from overshoot
and undershoot switching, and modest amplitude and necessary duration of address .
An overall phase difference, 0O, between the pump fields is also included . Such a
factor may arise, for example, due to beam multiplexing . The key problem is
determining under what values of separation and relative phase of the pumps the
left-hand beam can be independently switched .

Figure 2 gives examples from simulations in the self-focusing case . The dashed
curve is the prescribed hold beams whereas the resonator output profiles prior to,
during, and after the address are drawn bold . For XO = 2.0 and AO = 0 .0, part (a),
switching of the left-hand beam also triggers the right-hand beam, after which they
are in phase with each other and have coalesced in the final plot. However, for
XO =2 .25 the left-hand side can be selectively addressed . In this case a slight drop in
amplitude of the right-hand beam occurs due to the finite amount of cross-talk from
the `on' beam which has made a phase transition to the upper branch of
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Figure 2 . q = + 1 . Spatial profiles before, during and after the left beam has been addressed .
In part (a) a f.w.h.m. (intensity) separation of hold beams, XO =2 .0, is insufficient to
maintain independent switching . In (b) pixel independence at XO =1 .25 is achieved by
application of an overall phase differential (AO =n) to the pump fields .
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approximately it rad. When L1P=tt, part (b), relative beam phase again causes a
degree of annihilation, this time reducing the peak beam amplitude prior to
switching. This restraint, in conjunction with the intermediate destructive phase
barrier, halts the switching wave allowing independent switching down to an
impressive XO =1 .25. When XO is increased, the initial mutual annihilation is mostly
confined to between the beams and this alone is sufficient to inhibit induced
switching. This indicates that it is not just excessive cross-talk that prevents cross-
switching when XO is very low .

Performing the corresponding experiments for the self-defocusing nonlinearity
produces much less encouraging results . There is one slight difference in switching
strategy here, in that the pump fields are ramped into place . This is done well before
the switch is implemented and is a prudent precaution in view of the much reduced
input amplitude range for bistability .

Spatial profiles elucidating evolution during address are shown for the parameter
set XO =4.0, 0O=0 .0 in figure 3 (a) . Rapid oscillations can be seen growing on the
broad exponential wings and, at certain stages in the switch period, it is hard to
distinguish them from the unswitched beam . It is around this value of XO where the
right-hand beam becomes discernible after the switch has been removed, and, in this
sense, could be compared to the self-focusing minimum of 2.25. Problems of poor
switch contrast are also quite apparent . The most unstable modulational wave-
length, in terms of the plane wave instability [18], is on the scale of the beam
separation-this is indicated by the confinement of the left-hand beam just as it starts

x
Figure 3 (a)
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to switch . In view of this, and because this new modulation only occurs between the
two beams, it is immediately obvious that it is due solely to beam interaction or
nonlinearly trapped (standing) radiation modes .

One may expect that the relative phase of the beams could have a strong effect on
the spatial interaction pattern, but it has been found that significant qualitative
differences only occur when XO S 3 .0. Figure 3 (b) shows the full temporal sequence
when XO = 5 .0, AO = t[ . Modulations remain strong in this simulation and the spatial
displacement of the right beam, as it becomes strongly modulated into the pattern
(also present for A-0=O.O), is quite evident . At lower separations, and AO = 0-0,
beams quickly merge during the address producing a singularly broad, and
ultimately spatially symmetric, transmitted beam whereas for A P = n output beams
retain both phase character and resolution through an annihilation trough . Neither
case permits recovery of the address information through (reasonably sensitive)
intensity discriminators although address history is embedded into the system in the
form of a small (nonlinear) spatial shift of the beams .

The interaction modulation has been seen to have a wavelength that grows
slightly when the beams are close together and falls to an approximately constant
value at larger separations. Also note that the whole pattern shifts across the
transverse domain quickly adjusting to changes in the amplitude of the left-hand
beam .

To explain the nature of these modulations, the particular case XO = 7 .0, A(h= 0.0
is taken, see figure 4 (a) . Here interbeam oscillations are numerous and, by virtue of
the large separation chosen, the interaction modulation extending beyond the right-
hand peak is slight . For this case, we have (approximately) reconstructed the
individual complex field profiles, that each beam would have alone, using the outer
wings as data. Then, by superimposition of these, we have obtained a pattern
strikingly similar to the original data, as can be seen in figure 4 (b) . The origin of this
effect is thus not, in itself, an accumulative process of evolution but is a strong
interference pattern .

The slight differences, between figures 4 (a) and (b), may be attributed to spatial
discretisation, finite cross-talk which extended over the right peak and also to the
evolution of this interference pattern during intermediate cavity transits . When the
smooth profile section of the switched beam is plotted on the complex field plane,
figure 5 (a), we see that the field vector spirals down to the origin and also that
saturation of the nonlinearity in the beam peak slows down the runaway phase delay .
These phase profiles, caused by the additive effect of diffraction and sign of
nonlinearity, are in stark -contrast to those in the self-focusing case (not shown) where
phase gradients balance and stabilise . The spatial frequency of the phase oscillations
is displayed in figure 5 (b) on which profile locations where the Argand trajectory
passes through the real axis are marked . Such representations allow the inter-beam
structure to be immediately inferred, explaining why close beams produce larger
wavelength patterns and showing that the interaction wavelength should become
nearly constant for larger separations . The effect of an overall phase difference
between the beams can also be explained as one now expects only a spatial shift in the
pattern, of at most one modulation wavelength .

3.2 . Optical solitary wave memory arrays
The spontaneous occurrence of spatial solitary waves in our system has already

been predicted by both numeric and analytic studies [6,19] . An example of
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Figure 4 . 7 = -1 . Part (a) shows actual resonator output during switching for XO = 7 .0,
0O=0.0 while (b) is the reconstruction using only the outer wings of each beam as data
(see text for details) .
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X
(b)

Figure 5. In (a) the smooth exponential wing of the switched beam, at the end of the address
shown in figure 4, is plotted in the Argand plane . For (b) the reconstructed beam is
shown and points where the Argand trajectory passes through the real axis are marked .

spontaneous organisation of a broad (F= 50) beam into a stationary pattern of
three solitary waves is given in figure 6 . Note that over 100 cavity transits are
required for stabilisation . Now we examine the feasibility of inducing these robust
attractors on broad beams (F>> 1) by means of external (part-beam) address . Our
exploration is towards effecting a parallel binary memory array by quickly encoding
the address pattern on to the circulating beams asymptotic solitary basis [6] . We shall
deal with the self-focusing sign of nonlinearity and pursue pixel site definition by
hold beam modulation . To this end, our hold beam is a sinusoidally modulated



622 G. S. McDonald and W. J. Firth

yro
Ero
Gl

ro
y
V1

ro

O

ro . C

0
•
0

•

	

Uas
wo
C•

	

•
.

•

	

~
•

	

b
•

	

wO O.ro
>
O

c U

ro '
•

C1
OD
O

7
O
Y
Q
ro
a+
C
Oam



All-optical switching in a nonlinear resonator

	

623

Gaussian (5). Such a beam may be easily produced experimentally by interference
techniques .

A(x)=Ao [1 +Mcos (k„,x)] exp (-x2 ) .

	

(5)

The modulation depth is given by M (IMI < 1) which may assume either sign
depending on whether a finite odd or even number of pixel sites is desired . The
density of the transverse array scales with the spatial pixellation frequency, km . The
most obvious initial constraint on array size is the requirement that pixel locations
must be such that the local hold beam amplitude lies between the appropriate
bistable switch points, denoted A„P and Adow„ in figure 7. These switch levels are
higher than those calculated for the smooth beam, as finite M entails additional
intensity gradients, and their determination necessitated a preliminary switching
study not only on the full set {A0 , M, km} but, also, considering address character-
istics . A0 and peak (Gaussian) address amplitude, As, are parameterized, in a similar
manner to the two beam case, as

Ao=Adow„+CH(A„P - Aowwn),

	

As = CsA0 .

	

(6)

To avoid overshoot and critical slowing down, the global maximum of the hold
beam is chosen to be approximately 70% into the working range, requiring C H < 0 . 7 .
Also shown in figure 7 are the address Gaussians, in the configuration
`1101001110101110101'. It is now clear that the address beams need to be
sufficiently well resolved to avoid induced switching in adjacent sites and, with
hindsight, we shall present results here for which XO is kept fixed at 4 .0. This allows
us to concern ourselves only with switch amplitude, where, at any F, (scaled) switch
power is given by As and switch energy is proportional to the product As T, where T

x

Figure 7 . Our sinusoidally modulated hold beam with respect to the appropriate up- and
down-switching amplitudes . Encoding of binary patterns on the circulating beam is
attained by temporally abrupt superimposition of the addressing Gaussians .
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is the duration of the temporally square address (in units of cavity transit time). The
choice of Cs depends strongly on that of T as there is a distinct trade-off between
switch power and duration . The subtleties of this and other scalings, involving the
temporal switching dynamics, have been the subject of an extensive study [20] .

Differences between spontaneous stabilisation and the part-beam switched
arrays needs to be clarified at this point. Firstly, in the spontaneous case, the pixel
count seems to depend upon how many full solitary widths, in groups of 1, 2 or 3, can
fit into the switched-on region, each group being separated by a small lower branch
node. The size of this on-region depends upon the peak amplitude of the pumping
beam, which is quite evidently above the up-switching threshold . In part-beam
switching, uniformity demands that there are lower branch nodes between each pixel
and, by definition, the peak hold beam amplitude must lie below this switching point .
Secondly, it has been found that the simple criterion of working between the two
switch points is not sufficient and that marginally stable end pixels can disrupt the
stability of the whole array [21] . Unaddressed end pixels seem to enable a bufferring
of the array from the `edge instabilities' and allow the hold beam modulation to
effectively `tile the box' in which the solitary waves sit .

In the following simulations the modulated hold beam is ramped into position
during the first 20 round trips and then held at the operational point for a further 10
before the address is implemented . We present results for which a finite amount of
spatial modulation (M= 0 .08) is incorporated into our hold beam . Existence of index
gradients arising from the lower branch pedestal and spatial solitary wave interaction
forces have, to date, necessitated some form of `pinning forces' [22] . Solitary wave
switching on finite beams has been extended out to a nineteen-bit array for which
F=3565 and k,„=124.4 were used . To preserve numerical accuracy, any further
extension would require a prohibitive leap in computational requirements . The
importance of using such a large array prompts us to try selective simulations out to
multiples of 1000 round trips . The adopted limit was 3000 . In figure 8 the resonator
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Figure 8 . Overlay of resonator output over a period of 2600-3000 cavity transits . In this
simulation the hold beam was allowed 30 transits for initialization and then a highly
asymmetric `1000000000111111111' was encoded in the subsequent five transits .
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output after a highly asymmetric encoding (`1000000000111111111') is presented in
overlay format for the final 400 cavity transits . Figure 9 displays the address of a
quasi-random pattern in a single cavity transit. Switch-on time has been seen to be a
simple and controllable function of address specifications .

4 . Summary
For parallel operation of two optical switches on the same etalon, it has been

found that self-focusing media are highly favourable . For both signs of nonlinearity,
separations necessary for independent switching have been determined . In the self-
focusing case inclusion of a (possibly multiplexed) phase differential between the
pump fields was found to enhance packing density . Poor contrast and, more
importantly, a high degree of interpixel structure was found for the self-defocusing
beams. At separations which were optimal for the positive sign of nonlinearity, an
unswitched pixel becomes barely discernible from the cross-talk modulation due to
the neighbouring `on' pixel . This modulation was shown to arise from a spiralling
phase profile which can be explained as due to an additive effect of nonlinearity and
diffraction .

For part-beam switching, in the self-focusing case, it has been shown that the
asymptotic solitary basis may be encoded with binary patterns in just a single cavity
transit and that the circulating beam subsequently retains this information over
thousands of round trips suggesting it as a strong candidate for nonlinear memory
elements .
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