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Abstract . In the context of the nonlinear interaction of counterpropagating
light beams, we demonstrate the unrealistic symmetries that arise in the
simulation of spontaneous pattern formation when using square computational
grids. We have formulated a generalization of the split-step Fourier method
which allows for non-orthogonal spatial grids . Implementation is shown to be
simple and to entail negligible computational overheads . Results for two-
dimensional Gaussian and extended cosine-bell input beam profiles are
presented .

1 . Introduction
In the modelling of nonlinear propagation of laser beams it has been common to

analyse the electromagnetic field as simply planar thus removing any effects
involving coordinates transverse to the direction of propagation . Consideration of
transverse effects is bringing nonlinear optics much closer to real systems and also
into the wider arena of space-time complexity [1-3] . To understand experimental
configurations in which many physical processes take place, one has first to consider
each component and its contribution to the whole . Here we focus on the basic
configuration of just two beams of light which are counterpropagating in a passive
nonlinear medium. Nonlinearity arises through the simple Kerr effect that reduces
the model equations to a bare minimum in which significant spatiotemporal effects
may arise. We concentrate on aspects of the numerical simulation of the problem
and, in particular, present a reformulation of the standard split-step Fourier method
which removes the symmetry constraints that are implicit in the use of orthogonal
computational grids [4] . We also consider an approximation to Gaussian beam input
which can reduce the otherwise enormous computational requirements of the
problem while still retaining finite beam effects .

2. The model
The system under consideration consists of a slab, length L, of self-focusing

material that is irradiated from each end by laser beams . The medium is assumed
perfectly antireflection coated so that cavity effects do not occur. Diffraction and
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nonlinearity in the same medium leads to the consideration of a pair of coupled
nonlinear Schrodinger-type equations for the evolution of the forward and backward
(scalar) electric fields-F and B respectively .

8F OF =i
8z + 8t =i

2 O,2 F+i4v(J'M 2 +21B1 )F,

	

(1)

aB aB
- 8z + 8t =i

2 V B+i4a(IB1 2 +2IF 2)B .

	

(2)

The input beams are assumed real and, generally, have a Gaussian amplitude
profile

F(x, y, z = 0) = Fo exp [ - ( x2 + y2)] ,

B(x, y, z = L) = B o exp [ - (x 2 +y2)] .

(3)

(4)

The scaling of equations (1, 2) implies that the fields have amplitude units, as
opposed to those of a nonlinear phase shift [5, 6] . We set L =1 and thus leave a single
parameter, v, which scales inversely with the (beam) Fresnel number. Numerical
solution of (1)-(4) is performed using a split-step Fourier method modified to
account for the simultaneous counterpropagation of the light fields [6-8] . In-
tegration is performed along the characteristics and discretization in the resulting
variables leads to an effective decomposition of the medium into a series of thin Kerr
slices that partition regions of free space . In these empty regions diffraction may
convert the nonlinear Kerr phase shift into an amplitude modulation [7] . Although
analytic work has already been performed on this system [5, 6], a thorough
exploration of the parameter spaces through numerical simulation is necessary to
investigate the fully developed nonlinear dynamics . Even with only one transverse
dimension, parameter sweeps can demand supercomputing resources . Any approxi-
mations which can reduce the computational load for simulations with two
transverse dimensions have to be fully exploited .

The experiments of Grynberg et al. [9] revealed that a stationary hexagonal
pattern of spots may arise in the far-field output of such a simple configuration . Their
medium consisted of sodium vapour and cannot be fully described by the Kerr effect
alone. It has been found, however, that such simple models of nonlinearity may
indeed allow study of the essential features of pattern formation and, in particular,
the spontaneous occurrence of hexagons on the output beams, a tendency which may
be generic for third-order nonlinear systems [4,10,11] . The analysis of the problem
in two transverse dimensions may be reduced to consideration of a set of interacting
rolls [12,13] . Each roll is essentially one dimensional in nature and can thus be
orientated at any angle in the transverse plane . For a hexagonal pattern three equal
amplitude rolls are required forming angles of n/3 to each other .

3 . Spatial grid symmetries
For simulations with Gaussian beam input profile, we use a cartesian spatial grid

with a minimum sampling density of 128 x 128 . Results are checked using denser
grids of up to 512 x 512 spatial points . Figure 1(a) shows the stationary pattern that
has developed on one of the output beams after a period of 150 medium transit times .
While there are some small regions where a close-packed pattern is evident, the
overall pattern has square symmetry . In figure 1(b) we show an equivalent
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Figure 1 . Spontaneous spatial patterns in the transverse plane of the output beam (Gaussian

beam input, FO=Bo=7 .5, a=0.0025) . (a) Fourfold symmetries are imposed by the use
of a square computational grid . (b) Inclusion of a small amount of noise on the input
beams allows the system to select a hexagonal pattern of spatial filaments .
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simulation but, in this case, a small amount of white noise (having amplitude 10 -6 )
has been included in the input fields [4] . This noise is sufficient to break the grid-
imposed symmetry and permit the system to select the preferred pattern-a
hexagonal array of spatial filaments .

There is always a finite amount of noise in any simulation and it is only when the
level of this noise crosses some threshold that the symmetry imposed on the solution
may be broken . Inclusion of a large amount of noise can, in some cases, induce
numerical instabilities and result in unphysical dynamical effects . Further compli-
cation arises since the required level of any symmetry-breaking seed depends on the
growth rate of the instability being constrained . Thus the use of noise to break
imposed symmetries is not an entirely satisfactory situation . To resolve this we have
solved system (1-4) by discretization of the solution on a non-orthogonal spatial grid .
Defining a new transverse basis (a 1 , a 2 ) and coordinates with respect to this basis
(X1, x2 ) one can write for any point, r, in the plane

r=x1a1+x2a2 . (5)

The Kerr effect is spatially local and thus independent of the basis used . However,
diffraction is a transverse coupling and the effect of this operator in the Fourier
transform plane has to be re-evaluated for implementation of the split-step Fourier
method. To do this we define projection vectors (b 1 , b2 ), such that bi • a;=b i; and
consider the action of the Laplacian on an arbitrary scalar function V(x1 , x 2 ) .
Defining the Fourier transform of this function, V(K 1i K2), through

V(x 1 , x2)= J Jex[i(Kixi +K2x2 )]p

	

i7(K1i K2) dK1 dK2 ,

	

( 6)

then it can be shown that the operation V V(xl , x2) is equivalent to

J J -[b 1 . b1K2 +b2 • b2K2+2b 1 . b2K1K2] exp [i(Klxl

+K2x2)] 17(K1, K2) dK1 dK2 . (7)

From (7) it is clear that (b 1 , b 2 ) is the new basis in Fourier space so that at any point,
K, in the transform plane

K=Kl b1 +K1 b2 .

	

(8)

To explicitly demonstrate the numerical scheme we now choose a particular non-
orthogonal space grid whose unit vectors form an angle of 7t/3 . Since a hexagonal
pattern may be constructed using equilateral triangles as building blocks, we are thus
essentially considering a hexagonal grid . More specifically, we may choose a 1 = (1, 0)
and a2 =(2,+) which implies that b 1 • b 1 =3 i b2 • b2 =3 and b 1 • b 2 = -3. In the
symmetrized split-step solution of (1, 2) the (forward field) solution is advanced

F(x, y, z +Oz) = exp (i 2 z v±) exp [iAz(IF1 2 + 21B12 )] exp' i 22VO F(x, y, z), (9)

and the diffraction operator becomes the following multiplication in the transform
plane

QAz4exp -i
2 2 3(K1

+K2-K1K2) ~`(K 1 , K2, z)

	

(10)
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X
Figure 2 . Array of sharp spatial filaments at the centre of the output beam when spatial

discretization is on a hexagonal grid . The whole computational grid is shown (0=71/3,
other parameters are as in figure 1) .

In the general case of a grid whose basis vectors form an angle of 0 then (10) becomes

ex p

	

i o Az
1	 Kz + Kz - 2 cos

	

K K F` K K x . p

	

2 2 sin20~ 1

	

( ) 1 z~ ( 1~ z~ )

	

(11)

In figure 2 we show the results after performing the same simulation as figure 1 (b)
but now with calculations made on our hexagonal grid . Here the solution has
converged to the hexagonal pattern without the addition of noise .

4. Transverse and longitudinal boundary conditions
We have simulated a variety of different longitudinal boundary conditions in

addition to incident Gaussian beams . Plane wave excitation is the most simple and
permits the usage of relatively few transverse sampling points (64 x 64) . Above the
threshold, the plane wave solution is unstable to formation of spatial patterns, but to
allow such patterns to form (consuming only a reasonable amount of computer time)
one needs to perturb or seed the initial fields in the medium . Given that noise may
introduce unwanted effects and that the solution depends on the amount of noise
added, one may adopt trial solutions for the fields along the medium . This approach
is satisfactory only if one knows, or can prove, that such a solution, if stable, is not
merely a local minimum in some potential and that it is stable to perturbations of an
arbitrary transverse structure . Unfortunately, the most suitable candidate for this
arbitrary perturbation is noise itself. Planar pumping may also impose unrealistic
spatial boundaries at the edges of the computational grid . The split-step Fourier
method uses fast Fourier transforms which enforces periodicity in both the x and y
directions. One thus models a zone of an implicitly infinite periodic spatial pattern .
This symmetry forces each zone to mirror its neighbours restraining the interaction
between zones and, by consequence, the resulting patterns that may form .

It is important to consider what effect that the size of the computational box may
have on the resultant pattern and if any grid resonances may arise . A sensible
approach to minimize the effects of periodicity is to define the box length, lb , to be an
integer multiple, n, of the most unstable spatial wavelength, .1,, . Generally, we find
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that the spatial orientation of the pattern may change and that there may be a longer
time needed for convergence of the solution in simulations where l b is chosen to
deviate from n Unlike simulations in only one transverse dimension, lb = nA„ is not
the only criterion for pattern convergence . This can be simply envisaged through
considerations of attempting to squeeze a hexagon pattern into a square box .

A further refinement to the planar pumping scheme is to seed a trial solution in
only a small region at the centre of the spatial grid. In this case we typically multiply
the solution seed by a two dimensional extended cosine-bell (2DEC) spatial
envelope. We have found that using this envelope (defined in figure 3) allows the
system more freedom to select a preferred pattern . The envelope seeds a range of
spatial frequencies while, in the initial stages of the simulation, the effect of the
spatial boundary conditions is greatly reduced . Classic defect structures, such as
penta-hepta pairs, often appear as transient structures when nucleating patterns
attempt to interlock at the edges of the computational grid . The planar pumping
approximation constitutes an essential tool for the study of pattern formation in laser
optics but one must eventually progress to finite beam effects and the massive
computational overhead which this usually entails .

We have found that the implementation of 2DEC input profiles (figure 3) may
produce results that are qualitatively the same as those for Gaussian beam input . In
both cases the structure of the input field implies a finite band of injected spatial
frequencies which can seed transverse instabilities and allow them to become quickly
established . The advantage is that the 2DEC input approximation can lead to major
computational savings . First, it allows maintenance of a well-defined and smooth
central beam region where regular patterns may form-the precisely known input
value of the central region lending itself to straightforward comparison with plane
wave analyses . Spatial variation of the pump beams can imply that the output profile
will be composed of a mixture of patterns . A large region of uniform input allows one
to verify whether there is a correspondence between, say, local incident intensity and
a specific output pattern . To obtain an equivalent region at the centre of a Gaussian
beam would require a very wide beam and a similarly large numerical grid with the
associated leaps in required computer time and memory usage for any simulation .
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Figure 3 . Two-dimensional extended cosine-bell input profile . The function defines a flat
circular region at the centre of the grid (F(z=0)=B(z=L)=fo for r=(x 2 +y2 ) 1 " 2
<T.14) and a background of zero field (F(z=0)=B(x=L)=0 for r> T../2) . The
two flat sections are joined smoothly by a cosine function .
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Figure 4 . Simulation on a non-orthogonal spatial grid and using two-dimensional extended
cosine-bell (2DEC) pump profiles. (a) Transient rings form on the output beams
(t=20). (b) Modulational instability breaks up the rings (t=30) . (c) Spatial filaments
arrange themselves into a hexagonal pattern (t=40) . Parameters are 0=a/3, fo=3.43,
a=0.01, and t is in units of cavity transit times .
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Second, to maintain accuracy of the numerical integration, one requires the electric
field to be sufficiently negligible over half of the computation grid . This favours the
use of the 2DEC input approximation since, instead of a slow exponential profile
decay, the input level may be defined to rapidly approach and attain zero field near to
the region of pattern formation .

Results from a simulation with 2DEC pump field and performed on a non-
orthogonal grid are shown in figure 4 . Even though only 64 x 64 spatial grid points
have been used, this simulation demonstrates the sequence which gives rise to
spontaneous hexagon formation on wide Gaussian beams . There has been no
artificial noise added here . Instead, the rapid spatial variation of the input profiles
seeds an instability that grows and develops in a relatively short integration period .
In figure 4 (a) the output beam has a well-established ring structure . Rings occur
because the central flat region of the input is above the threshold for modulational
instability and since, initially, there is no preferred transverse direction for the most
unstable spatial wave-vector . Subsequent developments, figure 4 (b), show a second
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Figure 5 . Output patterns for 2DEC input calculated on a spatial grid whose basis vectors
form an angle of 75° (f0 =2 .127, a=0. 026, t = 20) . (a) Wide spatial filaments form a
hexagon . (b) Positions of the corresponding peaks in the transform plane .
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modulational instability-this time along the smooth ridges of the rings which leads
to the break-up of the output pattern into spots . The final part of figure 4, at only
t=40, shows that the spots arrange themselves into a uniform hexagonal pattern .

Our results would be incomplete if non-hexagonal grids were not to be
considered. In figure 5 we show the output pattern for a grid angle 0 = 75' and, again,
2DEC input profiles . In figure 5 (a) a hexagonal pattern of wide spatial filaments can
be seen while in figure 5 (b) we show the Fourier transform (far-field) image . Recall
that b; • a;=8;; and thus the angle of the transform grid is 180 °-0.

Since spontaneous spatial patterns are only expected above a certain input level, a
natural spatial boundary effect will occur at some distance from beam centre for both
Gaussian and 2DEC pump fields . The role of this boundary and its effect on pattern
nucleation is still not properly understood . Other subjects of interest are the
conditions for the formation of any defect points or lines and their relation to the
neighbouring or host pattern . Such studies require large arrays of spatial filaments
and, while experimentally this may not pose great difficulties, the computational
requirements could be prohibitive . The implementation of 2DEC input, or some
equivalent approximation such as super-Gaussian profile, may allow computer
simulation to address such questions in the near future .

5 . Conclusions
We have demonstrated that caution is necessary in the numerical simulation of

spatial pattern formation . The use of a square computational grid may lead to
patterns constrained by the imposed symmetry . Addition of a small amount of noise
to the solution may break the symmetry constraint, but, at the same time, introduce
further dependencies and, sometimes, unwanted effects . Input profile of cylindrical
symmetry is not sufficient to break the fourfold grid symmetry as we have shown in
the case of input Gaussian beams. We have formulated the use of non-orthogonal
grids in the split-step Fourier method. Its implementation is trivial and does not
impose any appreciable computational overhead. At the start of any simulation one
calculates, and stores, a modified array which is used in place of the standard
(diffraction operator) array . We have also discussed pattern formation under planar
pumping and presented results for a two dimensional extended cosine-bell
approximation to the Gaussian pump field .

The central theme of this paper has been the valid reduction of a massively
intense computational problem in pattern formation, which typically requires many
cpu hours on a Cray supercomputer for its complete solution . We have presented a
reduced model which parametrizes all the complexity of the full problem but
which may be solved on a dedicated workstation . Indeed, most of the basic
phenomena and discussions are essentially independent of the model equations . The
considerations made here may well be applicable to a wide range of physical
problems .
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