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Abstract 

A reformulation of nondiffracting beams, based on more general (travelling wave) solutions of the nonparaxial wave 
equation, is presented. Zero order nondiffracting beams are found to be radial standing waves arising from counterpropagating 
zero order Hankel waves of the first and second kind, while higher order nondiffracting beams are formed from counter- 
rotating spiral waves which are described by Hankel functions of the corresponding order. The resulting physical picture is 
more general than the well-known integral representation of Bessel functions and we expect it to have implications for studies 
of the applications of nondiffracting beams. Generic descriptions of the transverse profiles of the electric field, applicable to 
experimental configurations for realising nondiffracting beams, follow directly from this formulation. Finally, the existence of 
classes of periodically nondiffracting beams, possessing finite angular momentum and having the characteristics of rotating 
and spiral waves, is predicted. 

1. Introduction 

It was shown by Durnin et al. [ 1 ] that the Helmholtz 
equation for the free space propagation of light beams 
possesses exact eigenmode solutions that, in principle, 
describe beams which propagate indefinitely without 
any distortion due to diffraction. The problem is that 
these “nondiffracting” solutions, the simplest of which 
is proportional to the zero order Bessel function, are 
of infinite transverse extent and energy, and therefore 
cannot be realised in practice. However, Durnin et al. 
were able to demonstrate in experiments with beams 
of $finite size that the characteristics of nondiffraction 
could be sustained over long distances [ 11. 

Since this seminal work, there have been many 
experimental and computational investigations of the 

1 Permanent address: Grupo de Fotbnica, Instituto National de 
Astrofisica, Optica y Electronica, Apartado Postal 5 l/2 16, Puebla, 

Mexico 72000. 

subject [Z-4], all of which have adopted the original 
mathematical treatment of Durnin et al. in which the 
integral representation of the zero order Bessel func- 
tion in the form of an azimuthal Fourier transform 
was used. On the other hand, interpretations of ex- 
periments on nondiffraction have relied either on ray 
diagrams (geometrical optics) or on Fresnel diffrac- 
tion theory. The former technique is of course only 
valid in the limit where the optical wavelength, h, is 
negligible compared to the characteristic length scales 
of the transverse patterns. Fresnel diffraction theory 
is considerably more general, but even then accounts 
only for leading order effects associated with finite A. 
These limitations are unfortunate given that one of the 
most interesting attributes of nondiffracting beams is 
that they can sustain transverse structure that is of the 
order of A in extent; this feature has potential appli- 
cations in the detection and monitoring of very small 
objects for instance. 
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In this paper we argue that the integral represen- 
tation of nondiffracting beams is incomplete. This is 
mainly because of the fact that it can only represent 
a stationary transverse pattern of infinite transverse 
extent. Furthermore, this conventional representation 
has not, in previous studies, led to any new predictions 
or insight into the nature of nondiffraction. We show 
that a more general formulism leads to a more com- 
plete representation of aspects of the experimental re- 
alisation of nondiffracting beams and that it also lends 
itself to a generalisation of the concept of nondiffrac- 
tion. More recently, Bessel beams have also been stud- 
ied in the field of nonlinear optics [ 4,5] and many of 
the results that we report (those which concern only 
the nature of the light itself) also have application to 
these studies. 

2. Solution of the wave equation 

The context of this paper is the linear nonparaxial 
wave equation for scalar beams [6] 

V2E + k2E = 0, (1) 

where V2 is the Laplacian in the spatial coordinates 
x, y and Z, k = w/c is the wavenumber, w is the an- 
gular frequency and c is the speed of light. In the 
above, the harmonic time dependence, exp( -iwt) , of 
the electric field has been removed. Seeking trans- 
verse eigenfunctions, one can also remove the rapid 
longitudinal variations of the field by setting E = 
H( x, y) exp( -ik, z ). Adopting now cylindrical co- 
ordinates (p, 4), such that E = H(p) exp( -ik,z + 
im4), and substituting this ansatz in&q. ( 1) yields 

2 

p2=+pz+[(k2-k;)p2-m2]H=0. 
dp2 

(2) 

By defining a radial frequency, k,,, which is given by 
kz = k2 - kz, Eq. (2) can be irnmedi~ately recognised 
as Bessel’s equation. 

It is at this stage in the derivation that most authors 
consider Bessel functions of the first kind, J,,, as the 
only physical solutions. However, Bessel’s equation is 
a second order differential equation and thus has other 
solutions that are Bessel functions of the second kind, 
also known as Neumann functions, N,. The reason 
why Neumann functions are not usually considered to 

be valid solutions is that, in isolation, they present sin- 
gularities. However, in combination with Bessel func- 
tions, the Neumann functions can have both physical 
meaning and consequence. A particular linear com- 
bination of these solutions yields the &h-order Han- 
kel functions, H,,,, which are more general solutions 
to Bessel’s equation than the Bessel functions them- 
selves [7] and which, in our notation, take the form 

H(‘)(k,p) = J,(k,p) +iN,(k,p) m 9 

H’2’(kpp) =.J,(k PI m P -i&(k P> P . (3) 

The reciprocal of the free parameter, k,, in the Hankel 
functions determines the length scale of the transverse 
structure of the solutions. For small values of k,, trans- 
verse variation of the field is slow and geometrical 
optics is a useful approximation for describing some 
aspects of the propagating light. On the other hand, 
as k, + k, the transverse length scale approaches A 
while, since k, + 0 at the same time, the phase vari- 
ation of the beam along the z-axis disappears. It is 
in this limit that the central spot diameter of the non- 
diffracting beam becomes smaller than A. 

3. Travelling and standing waves 

The Hankel functions of Eq. (3) describe exact trav- 
elling wave solutions of the nonparaxial wave equa- 
tion. In the case of the zero order (m = 0) solu- 
tions, the first Hankel function Hi” describes radially- 
symmetric outgoing waves (travelling away from the 
axis) while Hr’ represents incoming waves (travel- 
ling towards the axis). The type of radial symmetry 
which these waves possess is such that they are uni- 
form in the azimuthal direction, 4. To demonstrate 
this, we consider the transverse beam profile at lon- 
gitudinal locations such that exp( -ik, z ) = 1. Thus, 
one can write E = H(p) = Hi” + Hr’ and, in terms 
of the total real field, F(E) = ( l/2) [ Eexp( -iwt> + 
E* exp (iwt) 1, the individual zero order Hankel waves, 
F(Hi’)) and F(Hr)) are 3 

F(l) = Jo( k,p) cos( wt) + No( k,p) sin( wt) , 0 

FJ2’ = Jo( k,p) cos( wt) - No( k,p) sin( ot) (4) 

From Bqs. (4)) it can seen that as wt varies from 
27rp to 2r(p + 1)) where p is an integer, F,( If cy- 



S. Chdvez-Cerda et al./Opiics Cornrnunications 123 (1996) 225-233 227 

Fig. 1. Transverse profiles of the outgoing radial wave, F, ( ‘), of a zero order nondiffracting beam. The dimensionless transverse coordinates 

are (X,Y) such that k,,p= m. (a) it = 0, I$” = Jo(kPp), (b) wr = r/2, I$” = No(kPp) and (c) ot = V, F,,” = --Jo(kpp). 

cles smoothly through the following series of patterns: 
(Jo --+ No -+ -Jo --+ -NO -+ JO). During the same 
period Fi2’ cycles through the same patterns but in 
reverse order: (JO -+ -NO -+ -JO -+ NO --) JO). A 
section of this temporal evolution is shown in Fig. 1, 
where Fi” is plotted for wt = 0,~/2 and GT. From 
these snapshots of the transverse field, it can be de- 
duced that Fi” is an outwardly travelling radially- 

symmetric wave. Since the profiles of Fi2’ are given 

by the same field patterns, but in reverse order, it fol- 
lows that F$2’ is the complementary wave travelling 
inwards. It should be quite evident that these travel- 
ling wave features arise directly from the inclusion of 
the Neumann functions. 

The Neumann functions in Eqs. (3) -( 4) are usu- 
ally discarded because they possess a negative singu- 
larity at the origin; this feature would be apparent in 

Fig. lb were it not concealed by the perspective of the 
diagram. However, singularities of this kind are com- 
mon when radial symmetry is imposed on a solution; 
in this case, the feature can be interpreted physically 
as arising from the collapse of the incoming cylindri- 
cal wave on to the central axis which serves, simulta- 
neously, as the source from which the outgoing wave 
emanates. To satisfy the boundary conditions at p = 
0, each cylindrical wave must (in complex notation) 
be the complex conjugate of the other; this ensures 
that the imaginary (Neumann function) parts of the 
Hankel functions cancel out, leaving a Bessel func- 
tion standing wave of finite amplitude. However, one 
would be wrong to infer from this that the Neumann 
functions are irrelevant, because their mediating role 
is immediately revealed whenever the steady state so- 
lution is disturbed, or (in a finite beam experiment) in 
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regions far from the axis where a steady state cannot 
in any case be established. 

The first possibility is typified by the experiment 
described in [ 81 where the narrow central spot of a 

Bessel pattern was blocked by an obstacle on the p = 
0 axis. A very short distance beyond the obstacle, the 
shadow region was observed to be filled in and the 
Bessel beam restored. When the transverse size of the 
central spot approaches A, this process cannot be ex- 
plained in terms of Fresnel diffraction theory. How- 
ever, this effect can be explained in a natural way in 
terms of the ingoing Hankel wave. 

To understand the second possibility, it is helpful to 
refer to Fig. 2 which shows the region in which non- 
diffraction effects can be observed in the experiment 
of Durnin et al. [ 11. The source consists of a narrow 
annular ring of radius a followed by a collimating lens 
of focal length f. Each set of parallel rays drawn after 
the lens outlines the region where one of the Hankel 
waves exists, and the shaded cone indicates where the 
two waves overlap; it is only within this cone that the 
standing wave (Bessel function) profiles are formed 
and only here that the light remains nondiffracting. 
Beyond the cone, the field consists of the outgoing 
Hankel wave which continues to propagate away from 
the axis. For large values of k,p, the wave is described 
by the asymptotic form of the Hankel function. 

@‘)(k P> 
1 

P - -exp(ik,p). 
6 

(5) 

The corresponding intensity diminishes as l/k,p, 

whereas for an idealised Bessel beam the dependence 
goes as cos2 ( k,p) /k,p [ 91. Knowledge of the field 
pattern outside the cone of a zero order nondiffract- 
ing beam may not, initially, appear to be of particular 
significance. However, since in practice the cone 
must be of finite size, it is quite plausible that, in 
many of the proposed applications for nondiffracting 
beams, fixed arrays of nondiffracting probes, or two 
or more such beams with variable axis orientations, 
may be desirable. In these cases, an understanding of 
the interaction of adjacent beams, and the minimum 
separation required, necessitates such considerations. 

The representation of zero order nondiffracting 
beams as travelling waves can be easily general&d to 
four dimensions by including the rapid longitudinal 
variation of the field, exp( -ik, z ) . In doing so, travel- 

ling cylindrical waves result in conical waves of total 
wavevector k = k, + k,. It is this cone of wavevec- 
tors that appears in the integral formulation of Bessel 
beams [ 1,9]. With respect to the specific experimen- 
tal configuration shown in Fig. 2, we have assumed 
that the illuminated circular slit is sufficiently narrow 
and that any diffractive edge waves from the aper- 
ture boundary are of negligible amplitude. In some 
experiments, these conditions may not be rigorously 
satisfied and additional oscillatory features in the 
transverse profile of the beam may result. However, 
this configuration is only one of many that can be used 
to generate nondiffracting beams and a full treatment 
which includes configuration-dependent higher order 
effects is outwith the scope of this paper. Instead, we 
have quantified the generic features of nondiffracting 
beams and our results may have application to all 

experimental configurations which have been used. 

4. Rotating and spiral waves 

We now turn our attention to higher order non- 
diffracting beams and, again, firstly consider the 
field patterns at longitudinal positions such that 
exp ( -ik, z ) = 1. We repeat the procedure outlined in 
Section 3, now setting E = H(p) exp( im+) . Incorpo- 
rating the time dependence to find the total real field, 
yields the higher order Hankel waves as 

FA” = .l,,,( k,p) cos( wt - m+) 

+ N,(k,p) sin(wt - m4), 

FA2) = J,,( k,p) cos(wt - mq5) 

- N,( k,p) sin( wt - m+). (6) 

A correspondence with the zero order Hankel waves 
may be found by noting that when ot - mqb = (2 + 
p/2) r (p = 0, 1,2,3,4) the higher order waves cycle 
through a similar sequence of patterns: (J,,, -+ N,,, -+ 

-Jitt -+ -N,,z -+ Jm) for FL’) and the reversed se- 
quence for F, . c2) At any specific time, these patterns 
appear along lines of constant angle 4. Thus the higher 
order waves are not radially symmetric. Their func- 
tional dependence on wt - mcq5 shows them to be spa- 
tially inhomogeneous rotating waves (angular travel- 
ling waves). The temporal evolution of the transverse 
field patterns of FL’) and Fh2) are illustrated in F&. 
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Fig. 2. Schematic of an experimental arrangement for creating nondiffmcting beams. It is assumed that the collimating lens (having focal 
length f and radius R > a) is mounted in the aperture of an opaque sheet and that the illuminated circular slit (of width An and radius 

a) is sufficiently narrow: An << A.f/R. The evolution of a zero order Bessel function intensity profile in the conical region and the Hankel 

function profile-outside this region is superimposed. 

3. F$” and Fc2) 5 are plotted for fixed z and ot = 0 
and g. Parts (a) and (b) reveal the spiral nature of 
the higher order wave FL’). This wave has ridges of 
maximum amplitude which sweep out from the origin 
in an anti-clockwise direction. Considering the bright 
pattern at the centre of the beam, it can be clearly 
seen that the whole spiral pattern rotates in time. Parts 
(c) and (d) of Fig. 3 show that the second higher or- 
der Hankel wave is a counter-rotating spiral wave. In 
this case, ridges of high amplitude extend out into the 
plane in a clockwise direction. 

As in the case of the zero order Hankel waves, one 
may generalise these concepts to include the longitu- 
dinal dimension. In this case, the higher order Hankel 
waves become 

F(‘) = J,,(k,p) cos( k,z + ot - m+) n, 

+ N,,,(k,p) sin(k,z + wt - m4), 

Ff2) = J,( k,p) cos( k,z + wt - m4) m 

- N,,2(k,p) sin(k,z + wt - m+). (7) 

Since z can be seen to play an analogous role to t, 
one may consider the field to be a spiral wave which 
is rotating in time at fixed z, or vice-versa. Thus, a 
more accurate description of the field is that of a four- 
dimensional spiral wave. 

The category of nondiffracting beams that we have 
considered so far has been restricted to the case 
where the electric field can be factorised as E = 
H(p) exp(-ik,z+im+), whereH(p) = H,$,‘)+HiF). 
Thus, [El2 = IH( and the intensity profile of such 
beams remains invariant during propagation. For both 
zero and higher order beams we find that the resul- 
tant profile is a radial standing wave. Interestingly, it 
is known that the superposition of two radial stand- 
ing waves can result in a spiral wave [lo]. Thus, it 
should be possible to construct another type of non- 
diffracting beam (for which the transverse intensity 
profile varies periodically in z ) by superposition of a 
two or more distinct beams of the above type. Here, 
we consider the combination of two nondiffracting 
beams of the same carrier frequency, w, whose indi- 
vidual axes of symmetry coincide. We do, however, 
allow the cones generated by each of the beams and 
the order of the Hankel waves to be distinct. Denoting 
the orders of the invariant nondiffracting beams as m 
and m + n and their radial frequencies as k, and kb, 
superposition results in a total electric field given by 

ET = {Hm(k,p) + Hm+n (k$) ewCi(n4 - 6z)lI 

x exp[i(N - k,z)l, (8) 

where 
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Fig. 3. Contours of the transverse profiles of the counter-rotating waves, FL’) and FL*), of a higher order nondiffracting beam. The 

dimensionless transverse coordinates are (X, Y) such that k,p = dm and m = 5 is plotted. At exactly p = 0 the field values are 

truncated to facilitate visualisation. Parts (a) and (b) show I$” for it = 0 and wr = a-, respectively. In (c) and (d) the corresponding 

profiles of @*) are given for wt = 0 and tit = rr. 

%,(k,p) = ~~)(J$p) + #V&P)9 axis. For convenience, we define a total normalised 

k;=k2-k; and k;2=k2-(kZ+6)2. 
intensity which is given by Zr = IEr12/4 and thus, for 
the superposition of the above two beams, one finds 

For each separate beam, one may define a “collapse 
point” which occurs at the tip of the corresponding 
cone. We restrict our attention here to the field profiles 
which occur before the first collapse point on the z- 

IT = $L(k,~) 

+ ZG+,(kbp) exp[i(n+ - 6z)l 12. (9) 
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Boundary conditions dictate the regions where 
some, or all, of the Hankel waves are non-zero in 
the above expression. In the region where the two 
cones overlap all the constituent Hankel waves coex- 
ist (Z$/,*) and Z&!$’ ) and the intensity pattern can 
be written as 

+ 2J&,P)J??1+fz(k;p) cos(6z - n4). (10) 

Thus, for n = 0 (two constituent beams of the same 
Hankel order) superposition results only in a radial 
standing wave whose amplitude is modulated along 
the z-axis. However, for n # 0, the resulting beam 
is a rotating wave which possesses finite angular mo- 
mentum. Fig. 4 illustrates the type of beams which 
may be generated. Here, we have set m = 0, n = 3 and 
kb = 1.5k,. From the latter condition, it can be seen 
that the region where all the Hankel waves overlap is 
defined by the cone of the zero order beam (HO). In 
parts (a) and (b) of this figure snapshots of the lon- 
gitudinal evolution of the intensity profile in the over- 
lap region are shown. Three bright lobes surround the 
central spot and the whole pattern rotates around the 
beam axis. Immediately outside of this overlap region 
the inwardly travelling components of the zero order 
cone are absent and thus the resulting transverse in- 
tensity pattern is different. One finds, for this region, 
that 

ZT = $Z;,(k,p) + N$(k,p)l 

+ Jn,+n(k;d [Jnt(k,p) COS(~Z - 4) 

- N,(k,p) sin(6z - nqb)l. (11) 

Comparing this expression with Eqs. (6)) one can de- 
duce that, at fixed z, Zr is composed of a stationary 
radially symmetric pattern which has a rotating spi- 
ral wave pattern superimposed. In parts (c) and (d) 
of Fig. 4 the longitudinal evolution of Z,, as given by 
Eq. ( 11) , is plotted. Since the transverse extent of the 
overlap region diminishes, in the direction of increas- 
ing z , one can envisage the evolution of the net inten- 
sity pattern in terms of two adjacent zones of the trans- 
verse plane; a shrinking central overlap region and a 
surrounding annular zone. More specifically, this can 
be accomplished by constructing a pattern composed 
of a central (circular) region, say from part (a) of 
Fig. 4, and the corresponding outer (annular) region 

at the same longitudinal position and time (part (c) 
of Fig. 4). 

In the above considerations, angular motion devel- 
ops along the longitudinal coordinate. However, pre- 
cisely the same pattern evolution can also be generated 
in the time domain. If one relaxes the condition that 
the two constituent beams need to have the same car- 
rier frequency, and denote the frequencies of the two 
beamsasoandw+A, thenEqs. (9)-(11) generalise 
to include temporal evolution through the substitution 
n4 - 6z --+ nqh - Sz - At. Thus, one can generate 
a four-dimensional rotating wave. Alternatively, one 
may choose between rotation in the temporal or spa- 
ti.al domain by either matching the cones or the carrier 
frequencies of the constituent beams. 

5. Conclusions 

A reformulation of nondiffracting beams, based 
on travelling wave solutions of the nonparaxial wave 
equation, has been presented. It is found that Bessel 
beams are a particular case of standing waves in a 
cylindrically symmetric coordinate system. We have 
proposed that the integral representation of non- 
diffracting beams is incomplete and we believe that 
we have presented compelling reasons for the intro- 
duction of Neumann functions into the solution. They 
enable a consistent description of the travelling wave 
features. Their incorporation has implications both 

in terms of the nature of nondiffracting beams and 
in terms of applications (the interaction with other 
beams or optical elements, for example). The on-axis 
singularity of the Neumann functions (when present 
in isolation) has been given a physical interpretation 
and it is shown that this singularity is cancelled out 
when counterpropagating Hankel waves coexist. This 
cancellation allows the electric field and the intensity 
to be finite at every point of the transverse plane. 
The more general formulation leads to expressions 
for the complete transverse profile of the electric field 
(generic descriptions of experimental realisations of 
nondiffracting beams). Outside the cone of the zero 
order nondiffracting beam, we find that there is a non- 
oscillatory decay of the field profile which is described 
by the first order Hankel function of zero order. For 
higher order beams the field profile decays according 
to the corresponding higher order Hankel function. 
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Fig. 4. Contours plots of transverse intensity profile. The parameters are m = 0, n = 3 and kb = 1.5k,. The transverse scale is the 

same as that used in Figs. 1 and 3. Snapshots of the longitudinal evolution at fixed time are shown. (a) and (b) show profiles in the 
(periodically) nondiffracting cone of light for Sz = 0 and 6z = W, respectively. The function which defines the intensity patterns which 

appear immediately outside the inner light cone is plotted for the whole transverse plane in parts (c) and (d). 

We have demonstrated that the superposition of two ity of possible superpositions, involving zero order 

distinct nondiffracting beams can result in a period- and higher order Hankel waves and a continuum of 

ically reconstructing beam with rotating and spiral possible cone angles for each constituent beam. We 

wave features. This new class of beam could be termed have also shown that the rotating longitudinal evolu- 
“periodically nondiffracting”. In fact, when only one tion of such beams may be reproduced in the time 
carrier frequency is available, there exists an infin- domain by using constituent beams which have the 
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same cone angle but distinct carrier frequencies. Pe- 
riodically nondiffracting beams which possess rotat- 
ing wave characteristics may find use in applications 
which, for example, utilise a finite angular momen- 
tum of the light beam to manipulate small particles. 
Of course, the complexity of the transverse intensity 
profiles of such beams, and their speed of rotation, 
can be prescribed for any particular application. In this 
paper we have restricted our attention to nondiffract- 
ing beams which are defined by, or derived from, the 
ansatz E = H(p) exp ( -ik, z +im+) . Our findings are 
suggestive of the existence of a much wider class of 
periodically nondiffracting beams. Further investiga- 
tions are merited in which the rigid contraints of the 
above ansatz are systematically relaxed. 

In previous studies of the propagation of phase 
singularities and optical vortices [ 1 l] it was found 
that Gaussian beams which have a phase singular- 
ity evolve, during linear propagation, in such a way 
that the spiral wave structure of the field essentially 
diffracts out and is destroyed. It was found neces- 
sary to launch such a beam into a (self-defocusing) 
nonlinear medium to preserve the spiral field pattern. 
However, we have shown here that, for beam profiles 
which are periodically nondiffracting, spiral and ro- 
tating wave patterns which possess phase singularities 
may propagate stably in linear media. 

Acknowledgements 

The authors would like to thank Dr Jorge Ojeda- 
Castaneda for useful discussions. This work was sup- 
ported in part by UK SERC grant no. GR/JO4746, UK 
EPSRC grant no. GR/K54748 and funds from CONA- 
CYT (Mexico), INAOE (Mexico) and CVCP-ORS 

(UK). 

References 

[ 1 J J. Dumin, J.3. Miceli Jr. and J.H. Eberly, Phys. Rev. I&t. 
58 (1987) 1499; 

J. Dumin, J. Opt. Sot. Am. A 4 (1987) 651. 

[2] Y. Lin, W. Seka, J.H. Eberly, H. Huang and D.L. Brown, 

Appl. Optics 31 (1992) 2708. 
[ 31 N. Davidson, A.A. Friesen and E. Hasman, Optics Comm. 

88 (1992) 326; 
A.J. Cox and J. D’Hanna, Optics L&t. 17 (1992) 232. 

[4] T. Wulle and S. Herminghaus, Phys. Rev. Lett. 70 (1993) 

1401. 

[5] S. Chavez-Cerda, Self-confined Beam Propagation and 
Pattern Formation in Nonlinear Optics, Ph.D. Thesis, 

Imperial College of Science, Technology and Medicine, 

University of London ( 1994). 

[6] M. Born and E. Wolf, Principles of Optics, 6th Edition 
(Pergamon Press, Oxford, 1980). 

[7] George Arfken, Mathematical Methods for Physicists, 3rd 
Edition (Academic Press, San Diego, 1985). 

[8] R.M. Herman and T.A. Wiggins, J. Opt. Sot. Am. A 8 
(1991) 932. 

[9] P.W. Milonni and J.H. Eberly, Lasers (Wiley, New York, 

1988). 

[lo] PH. Ceperley, Am. J. Phys. 60 (1992) 938. 

[ 111 G.S. McDonald, K.S. Syed and W.J. Firth, Optics Comm. 

94 (1992) 469. 


