
Non-paraxial solitons

P. CHAMORRO-POSADA{, G. S. MCDONALD and
G. H. C. NEW

Laser Optics and Spectroscopy Group, The Blackett Laboratory,
Imperial College of Science, Technology and Medicine, Prince Consort
Road, London SW7 2BZ, England

(Received 15 September 1997)

Abstract. In this paper, we propose the use of ultranarrow soliton beams in
miniaturized nonlinear optical devices. We derive a nonparaxial nonlinear
SchroÈ dinger equation and show that it has an exact non-paraxial soliton solution
from which the paraxial soliton is recovered in the appropriate limit. The
physical and mathematical geometry of the non-paraxial soliton is explored
through the consideration of dispersion relations, rotational transformations
and approximate solutions. We highlight some of the unphysical aspects of the
paraxial limit and report modi®cations to the soliton width, the soliton area and
the soliton (phase) period which result from the breakdown of the slowly
varying envelope approximation.

1. Introduction

The potential applications of nonlinear optical devices in the ®eld of informa-
tion technology (IT) has motivated enormous research e� ort in recent years. A
great deal of attention has centred on the utilization of Kerr-type nonlinearities to
generate soliton beams which do not undergo di� ractive spreading. These beams
are, strictly, only de®ned for two-dimensional (2D) Kerr media. The two dimen-
sions concerned are spatial and de®ne a plane which contains the propagation axis
of the beam and an axis which is orthogonal to this. Beam propagation in 2D Kerr
media is studied by means of the nonlinear SchroÈ dinger equation (NSE) which is
analytically solvable using inverse scattering techniques [1]. On the experimental
side, soliton beams have been studied in di� erent 2D Kerr-like materials where the
light is allowed to develop structure in only one of the coordinates transverse to the
direction of propagation [2±7]. Spatial solitons have an innate appeal as binary
information elements since each element is not only self-trapped but also self-
stabilizing. It is for this reason that they have been proposed for use in optical
information processing and storage devices [8±10]. In this paper, we generalize the
theory of spatial solitons in 2D Kerr media to include ultranarrow soliton beams
and we propose the use of these beams in miniaturized nonlinear photonic devices.

To determine the maximum possible information density that can be stored or
processed, one needs to understand fully the interplay of the nonlinearity of the
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device material and the di� raction of the propagating light. The balance point
between these two e� ects de®nes a fundamental limit to the minimum possible size
of spatial soliton information units. For light in 2D media, di� raction may occur in
both the transverse and the longitudinal directions. The formulation of such 2D
di� raction involves the coordinates of these axes in a symmetric way. Indeed, the
coordinates are on an equal footing. Beam paraxiality is assumed when deriving the
NSE and this assumption breaks the symmetry between the two spatial dimen-
sions. In waveguide geometry, the paraxial approximation permits di� raction of
light in only the transverse direction. The resulting e� ect can be thought of as one-
dimensional di� raction.

However, in the context of the progressive miniaturization of IT devices, the
paraxial approximation may be violated since the optical wavelength ¶ may not
continue to be of vanishing magnitude in comparison with the width of the beam.
There are also other, more general, situations where the paraxial approximation
may break down. We ®nd that one example is when a soliton beam propagates at a
signi®cant angle to the reference axis of the evolution equation or, equivalently,
when two soliton beams interact at such an angle. Another example arises from the
fact that the NSE supports higher-order soliton solutions of arbitrary order. While
the launched beam for a higher-order soliton may be reasonably paraxial, sub-
sequent evolution can involve stages of su� ciently strong focusing that non-
paraxial e� ects become important.

Since solitons exist in real physical systems where (additional) higher-order
e� ects often come into play, the role of such e� ects can be of central importance.
Usually, the study of such e� ects results in only approximate solutions or recourse
is taken to purely numerical investigations. In this paper, we consider the higher-
order e� ect of non-paraxiality, which is quite general and fundamental to the light
itself. Other workers have examined the consequences of the breakdown of the
slowly varying envelope approximation in the context of nonlinear pulse propa-
gation [11, 12]. Their approach was to solve a full set of nonlinear Maxwell’s
equations by numerical techniques and, in each case, soliton-like pulses were
reported. However, since their approach results only in simulation data, a limited
amount of physical insight can be gained. This paper deals with nonlinear beam
propagation and our approach is quite complementary to previous numerical
studies. We make a systematic generalization of well known results from spatial
soliton theory and accommodate the breakdown of the slowly varying envelope
approximation within this framework. Both exact and approximate analytical
solutions are derived and the underlying geometry of these new solutions is
discussed in detail.

2. Non-paraxial nonlinear SchroÈ dinger equation

The 2D time-independent ®eld envelope ~E…x; z† of a continuous-wave mono-
chromatic beam with carrier frequency ! is related to the total electric ®eld
E…x; z; t† through

E…x; z; t† ˆ 1
2

~E…x; z† exp …¡i!t† ‡ cc; …1†

where cc denotes complex conjugate and x, z and t are the transverse, longitudinal
and time coordinates respectively. In a medium which has a nonlinear refractive
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index n… ~E†, the ®eld envelope obeys the nonlinear 2D Helmholtz equation

@2 ~E

@z2
‡ @2 ~E

@x2
‡ !2

c2
n2… ~E† ~E ˆ 0: …2†

Introducing a normalization appropriate to a forward propagating beam,
~E…x; z† ˆ A…x; z† exp …ikz†, a Kerr nonlinearity n… ~E† ˆ n0 ‡ n2j ~Ej2 and assuming
that the approximation n2… ~E† º n2

0 ‡ 2n0n2j ~Ej2 is justi®ed by the relatively low
value of n2 in the material, we derive the following non-paraxial nonlinear
SchroÈ dinger equation (NNSE):

µ
@2u

@±2
‡ i

@u

@±
‡ 1

2

@2u

@¹2
‡ juj2u ˆ 0; …3†

where we have employed the following normalizations:

± ˆ
z

LD
; ¹ ˆ

21=2x

w0
; u…¹; ±† ˆ

kn2LD

n0

³ ´1=2

A…¹; ±†: …4†

w0 is a transverse scale parameter that we shall later relate to the width of non-
paraxial soliton beams. This scale parameter can also be considered as equivalent
to the waist of a (reference) paraxial Gaussian beam, at ± ˆ 0, which has a
di� raction length LD ˆ kw2

0=2. This reference beam is a solution of equation (3)
in the limit where both µ and juj2 ! 0. The propagation constant is de®ned as
k ˆ n0k0 ˆ n0!=c, where c is the speed of light. Since non-paraxiality arises here
from linear 2D di� raction, it is natural to ®nd that the non-paraxial parameter µ of
the NNSE depends only on linear variables: µ ˆ 1=k2w2

0. Two alternative expres-
sions for µ lend their own particular insight into the character of the non-paraxial
parameter:

µ ˆ tan2 Y
4

ˆ 1

4p2n2
0

¶

w0

³ ´2

: …5†

In the ®rst form, Y is the far-®eld angle of the reference Gaussian beam and
re¯ects the degree of spread that this beam would experience under purely linear
paraxial propagation. The second expression gives µ directly in terms of the
number of optical wavelengths that are present in w0. In free space, µ ˆ 10¡3

implies around ten wavelengths in the full width 2w0 of the reference Gaussian,
while µ ˆ 10¡4 and µ ˆ 10¡5 give around 32 and 100 optical cycles respectively.

3. The fundamental soliton
3.1. Paraxial case

The NSE can be recovered from equation (3) in the limit µ ! 0. This limit
corresponds to the physical constraint that w0=¶ ! 1, as opposed to specifying a
magnitude of the longitudinal rate of change of the gradient of the amplitude or
phase of the beam. The resulting (paraxial) NSE is

i
@u

@±
‡ 1

2

@2u

@¹2
‡ juj2u ˆ 0: …6†
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Equation (6) has a fundamental paraxial soliton solution given by [1, 13]

u…¹; ±† ˆ ² sech ‰²…¹ ‡ V±†Š exp ¡iV¹ ‡ i

2
…²2 ¡ V2†±

³ ´
; …7†

where the amplitude (or energy) parameter ² and the transverse velocity parameter
V of the soliton correspond to the imaginary and real parts, respectively, of the
eigenvalues of the associated scattering problem [13]. The solution is a bell-shaped
beam that preserves its intensity pro®le with propagation and, in general, has a
linear transverse phase pro®le.

The lateral width of this beam is ®xed by the input amplitude ² and is given, in
normalized units, by ¹0 ˆ 1=². Thus, the soliton area, which is proportional to ²¹0,
is conserved during propagation. The particular case of a beam which propagates
along the ± axis is found by setting V ˆ 0, whereby the solution takes the simpler
form

u…¹; ±† ˆ ² sech …²¹† exp
i

2
²2±

³ ´
: …8†

Characteristic spatial lengths can be de®ned for the canonical forms of the
fundamental and higher-order NSE solitons [13]. In contrast with the canonical
fundamental soliton …²; V† ˆ …1; 0†, which preserves its shape during propagation,
each of the higher-order solitons are periodic in ±, with a soliton (amplitude)
period of ±A ˆ p=2. On the other hand, both the canonical form of solution (8) and,
at least, that of the ®rst higher-order soliton have a soliton …phase† period which is
given by ±P ˆ 4p.

While the inverse and direct scattering problems predict the parameters of
soliton formation from near-arbitrary input beam pro®les, in the paraxial case,
large propagation distances may be required to resolve the soliton components
from the (untrapped) di� ractive radiation modes. Thus it can be preferable to
launch a beam into the nonlinear medium which has a spatial pro®le that closely
matches the desired solution. For example, to generate an exact paraxial soliton of
unit amplitude and ®nite velocity at ± ˆ 0, the required input pro®le is

u…¹; 0† ˆ sech …¹† exp …¡iV¹†: …9†

The physical origin of the transverse phase pro®le in the above expression is the
transverse variation in the phase of the carrier wave. This occurs quite naturally
from the angle of the launched beam. However, the experimental generation of an
exact V ˆ 0 soliton requires extremely high interferomic accuracy. In terms of
numerical work, the simulation of beams with V 6ˆ 0 requires a su� cient number
of transverse data points to sample each of the transverse spatial periods over which
the phase changes by 2p. Hence, in the simulation of one or more paraxial solitons,
for which the optical wavelength is negligible when compared with the soliton
width, the requirement to have a reasonably ®nite number of transverse grid points
restricts considerations to a very small number of con®gurations in which the angle
involved is almost vanishingly small.

3.2. Non-paraxial case
Here, we report that the NNSE (3) has an exact non-paraxial soliton solution

which is a three-parameter generalization of the two-parameter paraxial soliton
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solution of the NSE. This can be found by seeking a solution of equation (3) of the
form

u…¹; ±† ˆ ² sech ‰g…¹ ‡ V±†Š exp ‰i¿…¹; ±†Š; …10†

where g and ¿ are, initially, undetermined functions. Substitution of the Ansatz
into equation (3), and solving the resulting equations for g and ¿, subject to the
constraint that the paraxial soliton is a particular solution, we ®nd that

u…¹; ±† ˆ ² sech
²

…1 ‡ 2µV2†1=2
…¹ ‡ V±†

Á !

£ exp ¡iV¹
1 ‡ 2µ²2

1 ‡ 2µV2

³ ´1=2

‡ i
1

2µ
± ¡1 ‡ 1 ‡ 2µ²2

1 ‡ 2µV2

³ ´1=2
" #( )

: …11†

The usual amplitude parameter ² and transverse velocity parameter V are now
supplemented with the non-paraxial parameter µ. As required, the paraxial soliton
is a particular case of the more general solution and is recovered when µ ! 0. The
longitudinal phase factor (proportional to ±† can also be expressed in a form which
is a direct generalization of the corresponding dependence of the paraxial soliton
solution. Writing this factor as

exp
i

2
…²2 ¡ V2†­ ±

³ ´
; …12†

we ®nd that the new parameter ­ , introduced in expression (12), satis®es the
following quadratic equation:

µ…²2 ¡ V2†­ 2 ‡ 2­ ˆ
2

1 ‡ 2µV2
: …13†

From equation (11) it can be seen that the width of the non-paraxial soliton is
given by

¹0 ˆ
…1 ‡ 2µV2†1=2

²
: …14†

Thus the non-paraxial soliton area is proportional to ¹0² ˆ …1 ‡ 2µV2†1=2 and
depends on both the transverse velocity and the size of the beam (through µ). In
common with the paraxial case, this area is de®ned by the initial conditions and
remains conserved during subsequent propagation.

For a beam with zero transverse velocity, solution (11) takes the form

u…¹; ±† ˆ ² sech …²¹† exp i
±

2µ
…1 ‡ 2µ²2†1=2

³ ´
exp ¡i

±

2µ

³ ´
: …15†

Comparing with the corresponding paraxial solution (8), one sees that the non-
paraxial term introduces a correction in the phase of the V ˆ 0 soliton. For a unit
amplitude beam ² ˆ 1, zero transverse velocity implies that ¹0 ˆ 1 in normalized
units. Using equation (4), this width can be equated to w0=21=2 in unscaled units.
Hence, while µ only explicitly appears in the phase of this solution, the relationship
between µ and w0, given in equation (5), ®xes the absolute width of the non-
paraxial soliton in units of the optical wavelength.

Expressing the axial solution using the ­ parametrization results in a particu-
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larly simple form of the V ˆ 0 solution:

u…¹; ±† ˆ ² sech …²¹† exp
i

2
²2­ ±

³ ´
; …16†

where

µ²2­ 2 ‡ 2­ ˆ 2: …17†

In the paraxial limit, µ ! 0 and ­ ! 1, while ®niteness of the optical wavelength
(µ > 0) leads to ­ < 1. Consequently, we ®nd that the soliton …phase† period of the
canonical non-paraxial solution is given by ±0 ˆ 4p=­ and that it is larger than the
period of the paraxial solution.

Considering the experimental generation of non-paraxial solitons, it is likely
that the precise spatial pro®le of the launched beam will not be as critical as it is in
the paraxial case. This is because much shorter propagation distances will be
required for the solitonic components to be resolved, since the low-amplitude
(quasilinear) radiation modes will be on a shorter transverse length scale and will,
consequently, be more rapidly dispersed across the transverse plane. It is also
worthwhile to note that the simulation of ultranarrow non-paraxial beams is not as
severely restricted, in requiring that the angles involved are vanishingly small, as
computations in the paraxial regime. This is because the relaxation of the
constraint w0=¶ ! 1 can accommodate the consideration of large angles with
only a moderate number of transverse data points.

4. Geometry of the non-paraxial soliton

4.1. Dispersion relations
To gain insight into the form of the non-paraxial soliton solution (11), in this

section we consider the linear limits of the Helmholtz equation and the NNSE and
the resulting dispersion relations. Neglecting the intensity-dependent part of the
refractive index in equation (2), one has the linear 2D Helmholtz equation. Now
assuming that ~E varies as exp ‰i…kxx ‡ kzz†Š, one arrives at a dispersion relation for
a plane wave propagating at an angle ³ to the z direction:

k2 ˆ k2
x ‡ k2

z; …18†

where ³ ˆ tan¡1…kx=kz†. This rather straightforward relationship is shown in ®gure
1. Assuming now that u varies as exp ‰i…k¹¹ ‡ k±±†Š, the dispersion relation for the
NNSE in the linear limit is found to be

µk2
± ‡ k± ‡

k2
¹

2
ˆ 0: …19†

One can solve equation (19) to ®nd the longitudinal component k± of a propagating
®eld envelope:

k± ˆ ¡
1

2µ
§

1

2µ
…1 ¡ 2µk2

¹†1=2 ˆ ¡
1

2µ
§ ¢k± : …20†

¢k± is de®ned in the above expression for notational convenience. In the deriva-
tion of either the paraxial or the non-paraxial normalized evolution equation, one
eliminates the fast longitudinal phase variation of a forward propagating ®eld by
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introducing the factor exp …ikz† ˆ exp …i±=2µ†. However, it is clear that solutions
corresponding to both forward- and backward-propagating waves still exist. These
are given by the plus and minus signs respectively in equation (20). For visualiza-
tion purposes, it is instructive to write the linearized NNSE dispersion relation as

k± ‡ ®

®

³ ´2

‡ k¹

®1=2

³ ´2

ˆ 1; …21†

where ® ˆ 1=2µ. In ®gure 2 we plot this ellipse and highlight where the solution
corresponds to forward and backward components. The geometry of the propaga-
tion vector, as de®ned in equation (20), is shown explicitly. The Helmholtz
dispersion relation (18), which is a circle of radius k around the origin in …kx; kz†
space, is now mapped onto an ellipse which is centred at …k¹; k±† ˆ …0; ¡1=2µ† and
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Figure 1. The dispersion relation for the linear 2D Helmholtz equation. kz and kx are the
longitudinal and transverse components respectively of the spatial wave-vector.

Figure 2. The dispersion relation for the linearized NNSE. Solutions reside on an
ellipse (shown as a solid curve). This ellipse is partitioned into regions of forward
and backward propagating waves (vertical dotted line). The construction of the
longitudinal components of a pair of forward and backward solutions, k± ˆ
¡1=2µ § ¢k±, is shown. Also plotted is the paraxial dispersion relation which, in
these coordinates, appears as a parabola (shown as a dotted curve).



which has half-axis lengths of 1=2µ and 1=…2µ†1=2. A plane wave propagating close
to the forward z direction can be seen to have a small negative value of k± , whereas
a backward-propagating wave has a value of k± which has an absolute value greater
than 1=2µ. The physical origin of the ®nal (longitudinal) phase factor, which
appears in equation (15) for example, is attributed to the normalization, exp …ikz†,
to a forward-propagating ®eld which is parallel to the ± axis.

Since the boundary between forward and backward propagation can be given as
k2

¹ ˆ 1=2µ, any numerical algorithm which determines the forward beam will be
required to ®lter out any spectral components which have k2

¹ > 1=2µ [14]. More
speci®cally, these high-spatial-frequency components experience a level of loss
which is given by exp …ik±±† ˆ exp ‰¡…2µk2

¹ ¡ 1†1=2±=2µŠ exp …¡i±=2µ†. The normal-
ized paraxial dispersion relation is k± ˆ ¡ 1

2
k2

¹ and can be used to represent a plane
wave which is propagating very close to the ± axis. This relation, which is a
parabolic approximation of equation (19) in the vicinity of the point …k¹; k±† ˆ
…0; 0†, is plotted (as a dotted curve) in ®gure 2. However, when a beam becomes
su� ciently non-paraxial, the paraxial wave equation will erroneously treat arbi-
trary values of k¹ as forward-propagating components. In particular, it can be seen
that this paraxial relation supports solutions for which the unphysical condition
k2

x > k2 is satis®ed.

4.2. Transverse velocity and soliton width
In this section we show that the paraxial NSE fails to describe accurately

soliton beam pro®les which are not, almost exactly, parallel to the ± axis.
Furthermore, we ®nd that this particular shortcoming does not appear in the
corresponding non-paraxial representation. The intensity pro®le of a soliton beam,
propagating in the ± direction, plots out a stripe of light which has a width of 1=².
However, when this beam propagates at a ®nite angle to the ± direction, the cross-
sections of the resulting intensity pattern (at each ±) should give a width larger than
1=². The degree of this widening can be deduced from the geometrical considera-
tions presented in ®gure 3. This expected enlargement of the V 6ˆ 0 soliton width
does not appear in the solution of the paraxial NSE.

Such broadening is, however, built into the non-paraxial solution through the
dependence of the width of the soliton on the transverse velocity parameter V. We
®nd that one can introduce, or remove, the velocity dependence of the soliton
width by implementing an appropriate rotational transformation in the transverse
plane. To do this, the non-paraxial solution and the NNSE are ®rstly written in
terms of unscaled coordinates. Then, one implements a rotational transformation
of magnitude ³ (as shown in ®gure 3). Finally, one transforms the solution and the
equation back to normalized units. These three operations can be combined into a
single transformation of the normalized (NNSE) units:

¹

±

µ ¶
ˆ

cos ³
1

…2µ†1=2
sin ³

¡…2µ†1=2 sin ³ cos ³

2

64

3

75
¹ 0

± 0

µ ¶
: …22†

For the NNSE under this transformation of units, …¹ 0; ± 0† ! …¹; ±†, one ®nds that

µ
@2u

@±2
‡ i cos ³

@u

@±
‡ V

@u

@¹

³ ´
‡ 1

2

@2u

@¹2
‡ juj2u ˆ 0: …23†
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From the properties of the solution transformation and the transformed NNSE,
one can de®ne the propagation angle ³ in terms of the transverse velocity and non-
paraxial parameters:

tan ³ ˆ …2µ†1=2V: …24†

Equivalently, the apparent soliton beam broadening factor, due to the rotation of
the coordinate frame, is found to be

…1 ‡ 2µV2†1=2 ˆ 1

cos ³
: …25†

Thus, for a ®nite value of µ, ³ ! p=2 requires V ! 1, as expected for a beam
propagating at a right angle to the longitudinal axis. For an intermediate angle of

³ ˆ p=4, one requires that 2µV2 ˆ 1 and, in the cases of µ ˆ 10¡3, 10¡4 and 10¡5,
one ®nds that the parameter V assumes values of around 22, 71 and 224
respectively. In addition to establishing the physical relationship between V, ³
and µ, equations (24) and (25) permit ³ to be eliminated from both equation (22)
and equation (23), whereby the inverse transformation …¹; ±† ! …¹ 0; ± 0† and the
correspondingly transformed NNSE are found by simply allowing V ! ¡V.

4.3. Approximate solutions
Since for most situations µ ½ 1, there are likely to be approximate expressions

for the non-paraxial soliton solution which involve only the leading-order correc-
tions to paraxial theory. For de®niteness, we examine the case where ² is of the
order of unity and µ is orders of magnitude less than this. With these assumptions,
the non-paraxial soliton takes the following form:

u…¹; ±† º ² sech ‰²…1 ¡ µV2†…¹ ‡ V±†Š

£ exp ¡iV¹‰1 ‡ µ…²2 ¡ V2†Š ‡ i

2
…²2 ¡ V2†± 1 ¡ µ

2
…²2 ‡ 3V2†

± ²µ ¶
: …26†

Each argument of the approximate solution can be seen to be composed of two
parts: the corresponding argument of the paraxial soliton (7), and a factor which is
a correction to account for a small degree of non-paraxiality. The assumption for
the validity of the above solution is that µ is su� ciently small that …µV2†2 ½ 1 for
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Figure 3. Schematic diagram of a propagating soliton beam, of width W, which makes
an angle of ³ to the (unscaled) coordinates of the evolution equation …x 0; z 0†. The
projected width in the original coordinate system should be W 0 ˆ W= cos ³.



² º 1. V º 1 is clearly a particular range of validity but this is not a necessary
requirement. For example, when µ º 10¡3, then V may be around 10 and, when

µ º 10¡4 or 10¡5, then V may be around 30 or 100 respectively. Thus, V ¾ 1 can
be acceptable for this approximate solution. In this case, the non-paraxial soliton
takes the following, even simpler, form:

u…¹; ±† º ² sech ‰²…1 ¡ µV2†…¹ ‡ V±†Š exp ¡iV¹…1 ¡ µV2† ¡ i

2
V2±…1 ¡ 3

2 µV2†
µ ¶

:

…27†

We now consider the experimental or computational input requirements to
generate a non-paraxial soliton. The general case, when no constraints are placed
on ² and V, is

u…¹; 0† ˆ ² sech
²¹

…1 ‡ 2µV2†1=2

Á !

exp ¡iV¹
1 ‡ 2µ²2

1 ‡ 2µV2

³ ´1=2
" #

: …28†

Generally, µ ½ 1 and, when ² º 1 and …µV2†2 ½ 1, the above input condition
reduces to

u…¹; 0† º ² sech ‰²…1 ¡ µV2†¹Š exp f¡iV¹‰1 ‡ µ…²2 ¡ V2†Šg: …29†

Again, this approximation encompasses parameter regimes in which V2 ¾ 1 is
permitted. In this case, the launched beam can be written as

u…¹; 0† º ² sech ‰²…1 ¡ µV2†¹Š exp ‰¡iV¹…1 ¡ µV2†Š: …30†

Here, the modi®cations due to non-paraxiality can be parametrized by the single
quantity µV2 which, from equation (24), can be associated directly with the
angular variable ³.

5. Conclusions

In this paper, we have considered the consequences of the miniaturization of
(solitonic) nonlinear optical devices through the incorporation of non-paraxial
e� ects in the nonlinear evolution equation. A NNSE was derived and an exact
solution for the fundamental non-paraxial soliton was presented. A detailed
comparison with the paraxial soliton has been made. In particular, the breakdown
of the slowly varying envelope approximation has been shown to lead to modi®ca-
tions of the soliton width, the soliton area and the soliton (phase) period. The
underlying physical and mathematical geometry of the non-paraxial soliton has
been explored through considerations of dispersion relations, rotational trans-
formations in the transverse plane, approximate solutions and the physical para-
meters involved (such as the width of the beam in terms of the number of optical
wavelengths).

In a forthcoming paper we shall present a complete and self-contained account
of a substantial amount of numerical work that we have under way in this ®eld.
There, we shall detail our non-paraxial beam propagation method, which we use to
solve the NNSE numerically, and present results dealing with the formation,
propagation and interaction of non-paraxial solitons. Further considerations, such
as the ®ssion of higher-order paraxial solitons, will also be presented.
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