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Abstract. We predict that ultra-broadband light consisting of over 150 distinct frequencies
of comparable energy can be generated in air at atmospheric pressure by stimulated Raman
scattering using resonant symmetric pumping. Nanosecond input pulses and the highest available
intensities are found to be optimal. Gain suppression analysis, incorporating a finite Stokes shift,
gives a qualitative explanation of the pumping requirements.

Non-parametric stimulated Raman scattering is well established as a simple and efficient
method of converting laser radiation to one or more lower (Stokes) frequencies. However,
parametric Raman conversion to higher frequencies, or the simultaneous generation of
multiple Raman lines, has generally been found to be much less efficient. The common
assumption has been that, for efficient frequency conversion, phase-matching conditions
dictate the angular geometry of higher-order waves. More recently, with H2 gas as the
Raman medium, we have shown that the collinear generation of higher orders using two
input beams, with a frequency difference which is resonant with the Raman transition
and which are temporally symmetric (of matching intensity, shape and linear polarization),
permits a maximum interaction volume and has much greater potential for the generation
of ultra-broadband light (Losev and Lutsenko 1993, 1996, McDonaldet al 1994, 1995,
McDonald 1995).

The use of air as the nonlinear medium has obvious attractions. Experiments
demonstrating multifrequency generation using the rotational transitions of N2 have been
performed, but the configurations used were highly non-optimal for bandwidth production.
In Eimerl et al (1993), only around 15 sidebands were generated because a single pump
beam was employed; new frequencies had to grow from background noise—a relatively
inefficient process involving cascade down-conversion from a number of distinct rotational
transitions. Dangoret al (1989) investigated the propagation of two light beams in air
at atmospheric pressure and rotational Raman scattering was observed to be the dominant
effect. Their configuration generated several sidebands even though the frequency difference
of their input beams was 10 linewidths away from resonance.

In this letter, we consider the resonant symmetric pumping of a single rotational
transition of atmospheric N2, the J = 8 → 10 transition which defines a Stokes shift
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of 76 cm−1 (Losev and Lutsenko 1994), and predict that a single beam containing over 150
lines of comparable energy may be generated. A wealth of applications for these results is
possible, including frequency conversion, atmospheric transmission of optical energy and
information, visual displays, sensing, measurement techniques, spectroscopy and inertial
confinement fusion (Eimerlet al 1992, McDonaldet al 1995).

To model ultra-broadband multifrequency Raman generation (UMRG), the electric field
is expanded in terms of plane waves whose frequencies are given byωn = ω0 + nωR

(n = 0,±1,±2, . . .) whereω0 andωR are the pump and Stokes frequency, respectively.
The dimensionless equations for the propagation, inz, of thenth normalized electric field
envelope,An, and the dynamics of the polarization wave,P , are (Losev and Lutsenko 1993,
McDonaldet al 1994)

∂An

∂Z
= ωn

2ω0
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whereZ = gI0z, g = 0.005 cm GW−1 is the measured Raman gain coefficient for air at
1 atmosphere pressure and at a temperature of 290 K (Rokni and Flusberg 1986),I0 is the
input intensity,τ is local time (in units of input pulse widthtp) and T2 = 130 ps is the
dephasing time. Dispersion defines a set of normalized mistunings,γn, which are determined
by the value ofγ1 together with a dispersion law. Assuming a Cauchy formula for the
frequency dependence of the refractive index,µn, one finds thatγn = nγ1(1+ (n−1)/2B0)

whereγ1 = (k1 + k−1 − 2k0)/gI0, kn = µnωn/c andB0 = ω0/ωR. Since this work deals
with atmospheric Raman generation, as opposed to UMRG in pure N2, we use the dispersion
law for air. We consider resonant and symmetric pumps (square pulses of equal amplitude,
parallel polarization and separated in frequency by 76 cm−1) supplied by a Nd:YAG laser,
ω0/2πc = 18 900 cm−1, and sideband (Losev and Lutsenko 1994). All other fields are
initially zero. In our previous work (McDonaldet al 1994, 1995, McDonald 1995), we
investigated UMRG in H2 using input pulses of square, Gaussian and noisy character.
While the duration and energy of the pump pulses were found to be important parameters,
the bandwidth and energy spectra generated were found to be remarkably insensitive to the
particular choice of input pulse shape (provided that the pumping remained symmetric). We
have verified that the results presented here are also insensitive to the details of the pump
pulse shapes.

Our analyses of dispersionless UMRG predict that, under CW conditions, a bandwidth
of B ≈ B0 = ω0/ωR is possible (Losev and Lutsenko 1993) and that, in the highly
transient regime, this figure may be enhanced by around 40% (Losev and Lutsenko 1996).
However, numerical simulations have shown that background dispersion plays a critical role
in determining the generated bandwidth (McDonaldet al 1994, 1995, McDonald 1995).
In physical terms, the absence of dispersion (γ1 = 0) implies exact phase-matching and
this maximizes the amount of gain suppression (Shen and Bloembergen 1965). A rapid
exhaustion of the polarization wave results which, in turn, halts bandwidth production after
a certain distance. On the other hand, there is no gain suppression for high dispersion
(γ1 � 1) but the parametric processes, which are necessary for bandwidth production, are
suppressed. Between the two limits, of maximum and zero gain suppression, there exists
an optimal level of suppression which leads to a maximum in the generated bandwidth. In
the case of H2 gas, such optimization is predicted to permit a bandwidth ofB ≈ 1.5B0

(McDonaldet al 1994, 1995, McDonald 1995). Since gain suppression is parametrized by
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the normalized dispersion variableγ1 (Shen and Bloembergen 1965), this maximum in the
bandwidth can be associated with an optimum level of dispersion,γ1 = γ opt

1 .
To determine the role of background dispersion for UMRG in air, equations (1) and

(2) have been solved numerically. The time domain of each wave was discretized into 500
complex points and up to 800 such waves were simulated. We shall only present results for
propagation distances of up to 20 m. This is because our model equations apply to a (locally)
planar section of the propagating fields and we expect that complicated transverse effects
may occur around this distance. To justify the assumption of plane-wave interactions, one
needs to consider beams which are sufficiently broad that significant diffractive reshaping
does not occur. However, since we deal with beams which have a specific peak intensity,
a broader beam implies a higher input power and other effects, such as self-focusing, may
become important. In fact, our preliminary studies of finite beam effects suggest that it
is actually the UMRG process which, in combination with beam diffraction and a finite
transverse intensity curvature of the fields, gives rise to the ultimate limitation on the
distance over which plane-wave modelling can be used.

(a)

(b)

Figure 1. Number of frequencies of comparable energy (bandwidth) generated during
atmospheric propagation. (a) I0 = 30 GW cm−2. Curves are labelled with the input pulse
width. (b) tp = 1 ns. Curves are labelled with input intensities (in GW cm−2).

Graphs showing the increase in bandwidth with propagation distance for three different
pulse widths (tp/T2 = 8, 1 and 1

8) are presented in figure 1(a). The results clearly show
that the input pulse width can play an important role and that the bandwidth is generally
lower for shorter pulses. We find that a pulse width of about an order of magnitude longer
than T2 is optimal and that, in this case, the bandwidth closely follows that predicted by
the corresponding CW simulation. The step-like features, which are quite evident in the
1 ns and 130 ps curves, are a common feature in UMRG. We have found that prior to these
steps the UMRG process is approximately described by theγ1 = 0 solution. In this regime,
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parametric processes dominate and the spectrum generated is composed of roughly equal
proportions of Stokes and anti-Stokes waves. In the vicinity of these step features, non-
parametric (down-conversion) processes begin to make a large contribution to the frequency
conversion. This gives rise to a relatively sudden growth of additional Stokes waves, which
results in a sharp increase in bandwidth (arising from the extension of the low-frequency
section of the UMRG spectrum).

Figure 1(b) displays the role of input intensity fortp/T2 = 8. In contrast to UMRG in H2,
we find that the highest available input intensities are optimal. Surprisingly, dispersion does
not, in these cases, give rise to bandwidth enhancement above the theoretical prediction for
dispersionless CW UMRG ofB0 ≈ 250. We have limited the results toI0 6 30 GW cm−2

to avoid gas breakdown, but find that higherI0 andz does lead to the predicted bandwidth
enhancement.

(a)

(b)

Figure 2. Output spectra (time-integrated intensity profiles) generated after (a) a short air path
of 4.5 m and (b) a long air path of 20 m. The units are defined so that the peak energy density
is normalized to unity. Parameters aretp = 1 ns andI0 = 30 GW cm−2.

Figures 2(a) and (b) show typical energy spectra of the beam after short (z = 4.5 m)
and long (z = 20 m) air paths, respectively. It should be stressed that other techniques for
generating multifrequency beams generally result in only a few lines, or broadband spectra
that need to be presented on a logarithmic scale. However, a remarkable characteristic of
beams generated in this way is that each new frequency channel carries approximately an
equal share of the propagating energy and the resulting spectra can be presented on a linear
scale. Figure 2(a) demonstrates that over 100 components are generated after only 4.5 m.
The efficiency of bandwidth generation is such that many competing nonlinear processes will
be greatly suppressed (Eimerlet al 1992, 1993). While each line in the spectrum continues
to contribute to the polarization wave which drives the multifrequency interactions, the
rapid re-distribution of energy means that the intensity at any one frequency (which could
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Figure 3. Bandwidth of the multifrequency beam at a distance ofz = 20 m. Curves are labelled
with the input pulse width.

act as a pump for a spontaneous, and non-resonant, competing process) is quickly depleted
by orders of magnitude. Figure 3 gives a summary of the predictions at a fixed distance;
underlining the trends discussed above and demonstrating continuity between the different
parameter regimes.

In studies of UMRG using H2, γ
opt
1 ≈ 2× 10−3 was found (McDonaldet al 1994).

For air, I0 = 30 GW cm−2 implies γ1 ≈ 0.45 × 10−3 and simulations reveal that
γ

opt
1 ≈ 0.025× 10−3 for B ≈ 1.5B0 at z ≈ 150 m. To gain a qualitative insight into

the reason whyγ opt
1 can vary by two orders of magnitude between different media, we

have generalized the classic gain suppression analysis of Shen and Bloembergen (1965) to
include a finite Stokes shift. In this letter, we give a brief outline of this analysis and defer
a more complete description to a future publication.

Parametric processes in UMRG generatepairs of new frequencies in which each wave of
the pair is out of phase with the other. This phase relationship gives rise to contributions to
the polarization wave which cancel each other and the medium grating eventually becomes
exhausted. The symmetry of such parametric generation, and the accompanying polarization
depletion, effectively suppresses the Raman gain. To analyse this effect, it is necessary to
consider a subsystem of the CW UMRG equations and the parametric generation of apair
of waves,An−1 andAn+1. Our objective is to quantify the gain experienced by these waves
and, for this purpose, we consider that the intermediate wave,An, is equal to unity and that
other waves are negligible. We seek eigenfunctions of the resulting subsystem of the form

An−1(Z) = an−1 exp
[(
K + 1

2i(γn+1− γn)
)
Z
]

(3)

A∗n+1(Z) = a∗n+1 exp
[(
K − 1

2i(γn+1− γn)
)
Z
]

(4)

wherean−1 anda∗n+1 are complex amplitudes and the gain per unitZ, g+, is given by the
real part ofK. Substitution of (3) and (4) into the propagation equations forAn−1 andA∗n+1
yields the following (complex) quadratic equation forK:

K2+ εK + 1
2i(n+ 1)(γn+1− γn)+ 1

4(γn+1− γn)2 = 0 (5)

whereε = 1/B0 = ωR/ω0. To facilitate a direct comparison with the results of Shen and
Bloembergen (1965), we consider here the case of equations (3)–(5) withn = 0. Solving
for the dimensionless gain, we then find that

g+ = −ε
2
+ 1

2
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The corresponding result of Shen and Bloembergen (1965), which applies in the limit of
zero Stokes shift, can be recovered from (6) by settingε = 0.

Since ε ≈ 3.1× 10−2 for the S(1) transition of H2 and ε ≈ 4.0× 10−3 for air, we
find that to obtain the same gain,g+, and hence the same degree of gain suppression, the
respective values ofγ opt

1 are smaller by one or two orders of magnitude. Thus, it is clear
from (6) that the inclusion of a finite Stokes shift is necessary for an accurate description
of the gain suppression in these cases. In other words, we find that the optimization of
UMRG bandwidth is parametrized byboth γ1 and ε. In figure 4, we plot the normalized
gain curves for air and H2 in the vicinity of γ opt

1 . A key feature is thatg+ → 0 asγ1→ 0,
even when finite Stokes shift is accounted for. Thus, we can report that gain suppression
is still maximized, and is in fact complete, in the zero dispersion limit.

Figure 4. Normalized gain (g+ in units of 10−2) as a function of normalized dispersion (γ1 in
units of 10−3) in air and H2. Inset: detail of the gain in air for lowγ1.

In addition to significantly different quantitative estimates of the normalized gain, it can
be seen that finiteε also introduces new qualitative features into the gain curves. Each
curve is composed of different regimes defined by the relative values ofγ1 and ε. For
example, whenγ 2

1 � ε4/4 each curve behaves asγ 2
1 /4ε

3, whereas forε4/4 � γ 2
1 � ε2

the curvature has the opposite sign andg+ ≈ −ε/2+ √γ1/2. Each of the above values
of γ opt

1 is found to be in the lowerγ1 region of this latter regime. It is important to note
that the smaller Stokes shift in air reduces greatly the amount of gain suppression for fixed
γ1. Thus, to attain the same optimal level of gain suppression,γ1 must also be reduced.
While this relatively simple analysis cannot fully account for the complexity of UMRG, as
illustrated in figure 2 for example, we believe that the new qualitative features uncovered
by this analysis are a clear indication of the physical character of the processes involved in
optimizing UMRG.
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