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Abstract. We investigate the extent to which the Raman generation of
ultrabroad-band light will be a� ected by nonlinear competing processes. The
model equations are generalized to incorporate an o� -axis competing signal and
a quantitative study is undertaken of its a� ect on the primary process. An
e� ective gain±length product for the parasitic process is introduced and its
characteristics examined. A simple analytical model has been developed for the
case of a competing process generated from background noise or ampli®ed
spontaneous emission. Predictions of this model are found to be in good
agreement with numerical simulations. We ®nd that the e� ciency and character
of ultrabroad-band multifrequency Raman generation, with resonant and
symmetric pumping, e� ectively drives such nonlinear competing processes
below threshold. The roles played by dispersion, transiency and the initial
intensity of the competing process are all systematically investigated. Multi-
frequency conversion is also found to be robust when the competing signal
grows from a strong seed, as could arise from scattering of a pump beam.

1. Introduction
Ultrabroad-band multifrequency Raman generation (UMRG) is one of the

most novel nonlinear optical processes to have emerged over the last few years.
With H2 gas as the Raman medium, our analyses have predicted that nearly 50
distinct frequencies of comparable energy may be generated [1±4]. More recent
calculations for UMRG in air at atmospheric pressure have predicted that beams
containing around 150 waves may be attained [5]. The richness of the subject leads
to connections with a large number of distinct research areas, re¯ecting the
unusual breadth of potential applications (which include frequency conversion,
atmospheric transmission of optical energy and information, sensing, visual dis-
plays, measurement techniques, spectroscopy and inertial con®nement fusion).

In conventional stimulated Raman scattering, all or nearly all the input optical
energy is delivered in the form of a single beam at the pump frequency. This
results in the excitation of many competing rotational and vibrational transitions,
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each with its own Stokes shift [6]. For relatively long input pulses, and only a
single Raman process, the e� ciency of energy conversion to the Stokes frequency
is determined, to a large extent, by a gain±length product Z ˆ gI0z, where g is the
steady-state gain coe� cient for the transition, I0 is the (undepleted) pump
intensity and z is the interaction distance. For typical levels of spontaneous
emission at the Stokes frequency and background loss, one can de®ne a threshold
Zth º 25, for which 1% conversion of the pump energy is obtained [7]. By contrast,
UMRG is initiated by resonant symmetric pumping, in which the incident energy is
divided equally between two (linearly polarized) collinear beams, their frequency
di� erence being matched to the rotational Raman transition which has the highest
gain [1±5]. Through a combination of parametric and non-parametric processes,
this leads to a very rapid and even redistribution of the input energy to both
(lower-frequency) Stokes and (higher-frequency) anti-Stokes components. The
resulting spectrum forms a uniform comb in frequency space with an overall
bandwidth that can approach the pump carrier frequency. The UMRG process
starts for values of Z as low as 0.1.

Experimental results, that support our overall predictions of UMRG using H2

gas, are appearing in the literature [8±12]. However, results to date have demon-
strated that competition may exist between several di� erent Raman resonances. In
this case, frequency components in the output spectra are not uniformly spaced.
We note that many of the proposed applications of UMRG bene®t greatly from (or
even rely upon) a uniform frequency comb. Furthermore, it is likely that such
competition reduces the e� ciency of the dominant UMRG process and leads to an
output bandwidth less than the theoretical maximum. The objective of this paper
is to quantify the role that competing nonlinear processes play in UMRG when a
single rotational transition of H2 gas is resonantly driven. It is of central
importance to determine whether parasitic processes are avoidable in UMRG
and whether their occurrence in experiments is simply the result of a choice of
system parameters. To address this question, we have generalized our model
equations to include a competing Raman process and have undertaken a quanti-
tative study to explore whether or not such additional processes are inherent to
UMRG.

2. Model equations

We begin with a brief overview of the UMRG equations which we shall
subsequently generalize to include a competing process. The electric ®eld is
expanded in plane waves whose frequencies are given by !n ˆ !0 ‡ n!R where
n ˆ 0; §1; §2; . . . and !0 and !R are the pump frequency and Stokes shift
respectively. One obtains the following dimensionless equations for the complex
®eld amplitudes An and the associated polarization wave amplitude P [1, 2, 13]:

@An

@Z
ˆ !n

2!0

‰P¤An‡1 exp …¡i®n‡1Z† ¡ PAn¡1 exp …i®nZ†Š; …1†

T2

tp

@P

@½
ˆ ¡P ‡

X

j

AjA
¤
j¡1 exp …¡i®jZ†: …2†

The ®elds An are normalized to the peak input amplitude at the pump frequency,
so that the maximum value of jA0…Z ˆ 0†j is unity; Z ˆ gI0z is the steady-state
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gain±length product and can be considered as a normalized propagation distance in
the context of the model; ½ is local time (in units of input pulse width tp) and T2 is

the medium dephasing time. Dispersion gives rise to a set of normalized mismatch

parameters ®n ˆ ‰…¢kn ¡ ¢k
n¡1

† ¡ …¢k0 ¡ ¢k¡1†Š=gI0, where ¢kn ˆ …·n ¡ 1†!n=c

and ·n is the refractive index at !n. Assuming a Cauchy formula for the frequency
dependence of ·n, one ®nds that ®n ˆ n®1‰1 ‡ …n ¡ 1†!R=2!0Š. Thus, for any

particular choice of !R=!0, ®1 determines the full set of ®n values. We consider

symmetric pumping with Gaussian pulses, A0…½† ˆ A¡1…½† ˆ exp …¡½2† at Z ˆ 0,
and assume that this pumping is exactly tuned to a Raman resonance. Nearly all

the experimental work published to date has dealt with UMRG in H2 gas. For H2

at 1 atm, the highest gain coe� cient corresponds to the S(1) rotational transition,

for which g ˆ 0:2 cm GW¡1. We consider pump beams which are supplied by the
second harmonic of a Nd-doped yttrium aluminium garnet laser and a Raman

sideband, giving !0=2pc ˆ 18 900 cm¡1 and !R=2pc ˆ 587 cm¡1.

To undertake a rigorous examination of the role of competing processes, one
would need to consider a large number of distinct Raman transitions. Moreover,

the Raman sidebands associated with each of these transitions would need to be

included in the model equations. However, for UMRG in H2 with only a single
Raman transition, around 100 complex ®eld envelopes are involved. To simulate

the interaction of waves arising from many distinct transitions would therefore

require enormous computational resources. We therefore consider a worst-case
scenario in which there is only one competing process which does not have to share

the pump energy with any others. To maximize the gain available to the competing

process, we shall consider the ampli®cation of a signal A 0
¡1 at the Stokes frequency

!¡1. For the propagation of this parasitic wave at an angle ³
0

¡1 to the multi-
frequency beam [13], the polarization wave is decomposed into two parts:

P ! P ‡ P 0 exp …¡i¢ 0
0z† where ¢ 0

0 ˆ ¢k¡1 ¡ ¢k 0
¡1 ˆ ·¡1!¡1…1 ¡ cos ³ 0

¡1†=c. The

UMRG model equations then become

…for n 6ˆ 0† @An

@Z
ˆ !n

2!0
‰P¤An‡1 exp …¡i®n‡1Z† ¡ PAn¡1 exp …i®nZ†Š; …3†

@A0

@Z
ˆ 1

2
‰P¤A1 exp …¡i®1Z† ¡ PA¡1 exp …i®0Z† ¡ P 0A 0

¡1Š; …4†

@A 0
¡1

@Z
ˆ !¡1

2!0
P 0¤A0; …5†

T2

tp

@P

@½
ˆ ¡P ‡

X

j

AjA
¤
j¡1 exp …¡i®jZ†; …6†

T2

tp

@P 0

@½
ˆ ¡P 0 ‡ A0A 0¤

¡1: …7†

Comparing systems (1)±(2) and (3)±(7), it can be seen that the UMRG equations
are supplemented with the additional (o� -axis) polarization wave P 0 which is

driven by the grating formed by the interaction of the parasitic process and the

pump wave A0. In the numerical simulation of equations (3)±(7), we shall assume
that the normalized interaction length for the competing process is equal to that

of the main UMRG process. This is a rather pessimistic assumption since ®nite
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³ 0
¡1 gives rise to a progressive reduction in the overlap integral of the two

processes.

3. Steady-state ultrabroad-band multifrequency Raman generation
In this section, we investigate UMRG with continuous-wave (CW) beams

(steady-state interactions). Since the components of the polarization wave follow
their source terms adiabatically in this limit, the full set of generalized multi-
frequency equations can be simpli®ed. Setting @P=@½ ˆ @P 0=@½ ˆ 0 in equations
(6) and (7), so that P…½† ! Pss and P 0…½† ! P 0

ss, one ®nds that

…for n 6ˆ 0† @An

@Z
ˆ !n

2!0
‰P¤

ssAn‡1 exp …¡i®n‡1Z† ¡ PssAn¡1 exp …i®nZ†Š; …8†

@A0

@Z
ˆ 1

2
‰P¤

ssA1 exp …¡i®1Z† ¡ PssA¡1 exp …i®0Z† ¡ jA 0
¡1j2A0Š; …9†

@A 0
¡1

@Z
ˆ !¡1

2!0

jA0j2A 0
¡1; …10†

Pss ˆ
X

j

AjA
¤
j¡1 exp …¡i®jZ†: …11†

In the steady-state model, the coupling of UMRG and the competing process, via
P 0

ss, reduces to two (automatically phase-mached) intensity-dependent terms.
Consequently, P 0

ss does not appear explicitly in the above equations.

3.1. Spontaneous generation and ampli®ed spontaneous emission
We ®rst consider the generation of a competing process from background noise

or ampli®ed spontaneous emission (ASE). The initial intensity of the parasitic
wave will then be very small (jA 0

¡1…0†j2 ˆ 10¡m, where m > 10) and any signi®cant
conversion of pump energy to the competing wave will typically require a gain±
length product of around 25 [7]. It is obvious that the initial stages of UMRG will
be una� ected by the ampli®cation of such a low-intensity seed. As a prelude to our
study, we begin by looking at the properties of UMRG when the additional
process is absent.
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Figure 1. Evolution of the bandwidth of a multifrequency beam propagating through a
2 m cell of H2 gas at a pressure of 1 atm, where the dimensionless parameter Z can
be interpreted as a distance (in centimetres): (¢ ¢ ¢ ¢ ¢), the solution when background
dispersion is neglected; (ÐÐ) the bandwidth growth when dispersion is accounted
for.



If we set gI0 ˆ 1 cm¡1, the normalized distance Z can be interpreted as a length
in centimeters. Then, for H2 gas at 1 atm, one ®nds that ®1 º 2:5 £ 10¡3 [2].
Figure 1 shows the bandwidth of the multifrequency beam, de®ned as the number
of frequency components of comparable intensity, as a function of Z for ®1 ˆ 0 (the
dispersionless case) and ®1 ˆ 2:5 £ 10¡3. In the former case, the bandwidth

saturates at a level given by B ˆ B0 ˆ !0=!R º 32 [1] whereas, when dispersion
is included, the bandwidth continues to grow along the cell [2]. The development
of the spectrum for each case is shown in ®gure 2. In the dispersionless case, the
UMRG spectrum converges to a ®xed pattern since the polarization wave becomes
exhausted (P ! 0) through multifrequency gain suppression [2, 5]. The role of
dispersion is to o� set gain suppression. Exhaustion of the polarization wave is then
incomplete, and this leads to sustained multifrequency interactions and further
bandwidth growth.
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Figure 2. Growth of the spectrum of the multifrequency beam with normalized
distance Z, where individual frequency channels are labelled using the index n:
(a) dispersionless solution; (b) the solution when background dispersion is included.

(a)

(b)



Although one might expect that any competing process would be well estab-
lished for Z as large as 200, Z is in fact not an appropriate measure of gain for a
parasitic wave. The point is that, whereas Z is de®ned in terms of the input pump
intensity, what is needed is an e� ective gain±length Zeff for the competing process
that takes account of the fact that the pump intensity falls dramatically as a result
of the dominant UMRG interactions. Our goal is thus to quantify this integrated
gain±length, so that a realistic parametrization of any leakage of input energy into
an unwanted line can be achieved.

For the general case of a competing process arising from a particular (ith)
Raman transition, the steady-state conversion e� ciency under conditions of
constant pumping is determined by Zi ˆ giI0z, where gi is the steady-state gain
coe� cient of the ith transition. We denote the effective gain±length in this case by
Zeff

i . To determine the relationship between Z and Zeff
i , one needs to model the

growth in the bandwidth B…Z† of the multifrequency beam. Seeking a very simple
model, we consider the linear approximation B…Z† ˆ 2…1 ‡ ²Z†, where ² controls
the rate of bandwidth increase with Z. We also assume that the energy of the input
beams is evenly distributed across the bandwidth, so that the intensity of the pump
and Stokes beams can be written Ip;S…Z† º 2I0=B…Z†. The logical gain±length
parameter for the competing process is then

Zeff
i ˆ

…z

0

giIp;S…z† dz: …12†

For a wave generated by the scattering of a pump beam from the ith Raman
transition, it is straightforward to show that

Zeff
i º gi

g

1

²
ln …1 ‡ ²Z†: …13†

Equation (13) assumes that there is an unlimited space±time region within which
the parasitic wave can deplete the axial pump energy. However, as already noted, if
the competing process is not collinear with the pump beam, a maximum value Zmax

will apply. The simplest way to incorporate this feature in the model is to de®ne an
e� ective pump intensity (the one seen by the competing process) as Ieff

p;S…Z† ˆ
f …Z†Ip;S…Z† where f…Z† ˆ 1 for Z 4 Zmax and f …Z† ˆ 0 for Z > Zmax. One then
®nds that the maximum e� ective gain±length product is given by

Zeff
i º

gi

g

1

²
ln …1 ‡ ²Zmax†: …14†

From the simulation data presented in ®gure 2, one can also use equation (12) to
evaluate Zeff directly. The results for the dispersionless case are presented in ®gure
3 (a), which displays three di� erent forms for Zeff , calculated using the pump
intensity, the Stokes intensity and their average ‰Ip…Z† ‡ IS…Z†Š=2. It can be seen
that bandwidth generation leads to at least an order-of-magnitude reduction in the
gain±length for competing processes. It is important to note that no curve gives
Zeff > 25, which implies that small seeds, arising from background noise or ASE,
will not be ampli®ed to any signi®cant level. The large di� erence between Zeff

calculated using Ip and Zeff calculated using IS (curves 1 and 2 respectively) can be
explained by the character of the solution shown in ®gure 2 (a). For Z < 70, the
two estimates of Zeff are relatively close, but thereafter the two curves diverge
monotonically. This arises from the convergence of the solution to a ®xed pattern
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in which jA0j º 0 and jA¡1j º 0:1. To use the analytic expression for Zeff (equation
(13)) we set gi ˆ g to maximize the gain available to the competing process and
then choose ² ˆ 1

2
to accommodate the linearized bandwidth and spectral intensity

distribution approximations. The resultant curve, labelled 4 in ®gure 3 (a), proves
to be a remarkably good measure of Zeff as determined by the average of Ip and IS.

Figure 3 (b) shows the corresponding results for ®1 ˆ 2:5 £ 10¡3. As in the
dispersionless case, Zeff derived from Ip is initially lower than Zeff using IS. This
di� erence arises from a rapid energy transfer, from Ip to IS, in the early stages of
UMRG …0 < Z < 3†. As indicated in ®gure 1, the UMRG process is largely
independent of ®1 for low values of Z. Thus, the curves for Zeff also display this
insensitivity. However, for higher Z, the complex evolution due to dispersion
tends to average out the di� erences in Zeff based on Ip and IS. For the analytical
model, we retain ² ˆ 1

2
and ®nd that, in this case, the agreement with Zeff

calculated using simulation data is quite spectacular. We also note that the more
realistic calculations, which include dispersion, predict a much lower value of the
net gain for a competing process. In this case, Zeff …Z ˆ 200† º 10. Since, by
de®nition, the main UMRG process exploits the Raman transition with highest
gain coe� cient, it can be seen from the gi=g coe� cient which appears in equation
(13) that even this value of Zeff may be an overestimate. We conclude that the
relatively high e� ciency of UMRG leads to the establishment of a su� ciently
broad-band multifrequency beam that competing processes, which grow from
background noise or ASE, remain below threshold …Zeff < Zth).

3.2. Scattered light
We now consider the potentially much more serious problems that could arise

if a portion of an input beam is inadvertently scattered o� -axis by the optical
elements present and provides the seed for a competing process. This can be
examined, in the context of system (8)±(11), by considering relatively large
coherent o� -axis seeds. It is possible that a `winner-takes-all’ situation might
arise in the initial stages of UMRG in which either most of the energy remains on-
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(a) (b)

Figure 3. E� ective gain±length Zeff that would be experienced by a competing
nonlinear process as a function of normalized distance Z for (a) ®1 ˆ 0, and
(b† ®1 ˆ 2:5 £ 10¡3: curves 1 and 2, for Zeff calculated directed from simulation
data, using Ip…Z† and IS…Z† respectively; curve 3, calculated using an average of the
pump and Stokes intensities; curve 4, the simple analytical model of Zeff .



axis (as the multifrequency beam) or a strong o� -axis seed depletes the pumps

(draining su� cient energy o� -axis to halt UMRG).

Simulations investigating a wide range of initial seed levels jA 0
¡1…Z ˆ 0†j2 ˆ

10¡13-10¡1 have been performed. However, it is su� cient to present results which

deal only with relatively strong seeds. Bandwidth evolution for the dispersionless

case is shown in ®gure 4 (a). We obtain the quite remarkable result that the

bandwidth of the multifrequency beam actually increases with the inclusion of a

scattered wave. Indeed, for the largest seed level jA 0
¡1…0†j2 ˆ 10¡1, bandwidth

enhancement is close to 50%. The presence of an o� -axis wave upsets the
convergence of the UMRG solution to a ®xed pattern and prolonged interactions

permit a much higher bandwidth to be attained before UMRG eventually

saturates. After saturation, both the UMRG spectral pro®le and the intensity of

the competing process are Z independent. We ®nd that the competing process
becomes appreciable, jA 0

¡1…200†j2 º 0:1, when the scattered wave has an initial

intensity of around 10¡3.

The results obtained when background dispersion is included are shown in

®gure 4 (b). In this case, a similar bandwidth enhancement occurs in the earlier

stages of UMRG, Z < 70, which roughly corresponds to the regime where the full
impact of dispersion has not yet occurred. For larger propagation distances, the

o� -axis seed has a detrimental e� ect on bandwidth production. However, in all

cases shown, the bandwidth generated at Z ˆ 200 is still above the theoretical

value for dispersionless UMRG (B > B0). This detrimental e� ect can be attrib-

uted to the sustained ampli®cation of the scattered wave which results from the

replenishment of the pump wave due to the constantly evolving UMRG spectrum.
For example, when the scattered wave is initiated with a relative intensity of 10¡3,

the net e� ect of dispersion is to permit jA 0
¡1…200†j2 º 0:7.

In ®gure 5 we present a summary of the dependence of bandwidth on the initial

intensity of the competing process. These results con®rm the trends suggested in

the previous ®gures, showing bandwidth enhancement for ®1 ˆ 0 and, more
importantly, that only a relatively small decrease in bandwidth occurs when

dispersion is included. It is particularly surprising that the decrease is so small
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(a) (b)

Figure 4. Bandwidth generated along the Raman cell when a competing process is
initiated by part of a pump beam which is scattered o� -axis for (a) ®1 ˆ 0 and
(b) ®1 ˆ 2:5 £ 10¡3 (the curves are labelled according to the relative intensity of the
scattered wave): curve 1, jA 0

¡1…0†j2 ˆ 10¡6; curve 2, jA 0
¡1…0†j2 ˆ 10¡3; curve 3,

jA 0
¡1…0†j2 ˆ 10¡2; curve 4, jA 0

¡1…0†j2 ˆ 10¡1.



when the initial intensity of the parasitic wave is 10% of the pump beam intensity.
For the lower seed levels considered in ®gure 5, the output bandwidth appears to
become insensitive to the initial intensity of the parasitic wave. Indeed, we can
con®rm that, for seed levels which are many orders of magnitude below those
presented in ®gure 5, the output bandwidth remains at the level shown for
jA 0

¡1…0†j2 ˆ 10¡6. This feature validates our approach to studying the role of
spontaneous generation and ASE in the previous section and the conclusions
reached there. For longer Raman cells (Z > 200), the ®1 ˆ 0 curve remains as
shown in ®gure 5 since the UMRG spectral pro®le and the intensity of the
competing process have become stationary with respect to Z. For ®1 ˆ 2:5 £ 10¡3,
we ®nd that higher Z leads to broadly the same conclusions, although some
statistical (or chaotic) ¯uctuations appear owing to the complexity of the evolution
of the waves.

4. Transient ultrabroad-band multifrequency Raman generation
Having investigated the generalized steady-state UMRG equations in detail,

we now consider the transient e� ects that occur when the width of the input pulses
is long, comparable or short when compared with the polarization dephasing time
T2 (approximately equal to 2.6 ns for H2 gas at atmospheric pressure). In this
section, we present results from the numerical solution of the full system (3)±(7).
We consider Gaussian input pulses for the pump beams and the parasitic wave,
although the precise choice of pulse shape has little or no e� ect on the conclusions.
While, in steady-state modelling, one deals with the intensity of each wave, namely
jAnj2, here the important parameters are the peak input intensity and the energy
density

„
jAnj2 d½ . Accordingly, the bandwidth is de®ned in this section as the

number of frequency channels containing comparable energy density.
We ®rst consider the long-pulse regime, tp=T2 ˆ 10, for which there should be

reasonable correspondence with the steady-state limit. Figure 6 (a), for the
dispersionless case, shows the role that the initial peak intensity of the competing
process plays in determining the bandwidth generated along the Raman cell. The
curves for tp=T2 ˆ 10 are very close to the corresponding curves in ®gure 4 (a),
which con®rms the predictive power of the steady-state model. Figure 6 (b) shows
the e� ect of dispersion; the corresponding data for CW beams is shown in ®gure
4 (b). It can be seen that, for relatively long input pulses, the overall trends are
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Figure 5. Dependence of the bandwidth at the output of the Raman cell on the initial
intensity jA 0

¡1…0†j2 of the competing process: (¢ ¢ ¢ ¢), the dispersionless case; (ÐÐ),
data for ®1 ˆ 2:5 £ 10¡3.



again accurately predicted by the much simpler CW model. In the initial stages,
where dispersion plays a less signi®cant role, bandwidth enhancement is evident.

In the latter stages, replenishment of the pump wave leads to continued growth of

the competing process and, eventually, this leads to a small reduction in band-
width. The complexity of the evolution in dispersive UMRG leads to small

quantitative di� erences between the CW and transient solutions in the latter stages.
Results for tp=T2 ˆ 1, which lies between the quasi-CW and highly transient

regimes, are shown in ®gure 7. Considering the dispersionless solutions (®gure

7 (a)) we ®nd the surprising result that there is a very strong insensitivity to seed
level, even for relatively large scattered intensities. Each of the curves closely

follows the UMRG solution in which the competing process is absent. Closer
examination reveals that this insensitivity is associated with suppression of the

ampli®cation of the competing process. The overall features of bandwidth growth

for tp=T2 ˆ 1 and ®1 ˆ 0 are, ®rstly, a slower redistribution of the pump energy
into the higher-order Stokes and anti-Stokes components and, secondly, a satura-

tion of bandwidth growth at a higher level than that reached by the dispersionless

CW solution. For dispersionless transient UMRG, the solution converges to a
®xed pattern which involves a series of interlocking Raman soliton pulse trains in

the time domain [4]. The results for tp=T2 ˆ 1 when dispersion is included are

shown in ®gure 7 (b). In addition to transiency suppressing the growth of the
competing process, it can be seen that, to a large extent, this level of transiency also

suppresses the e� ects of dispersion on bandwidth production for these propagation
distances. Thus we ®nd that the above conclusions, reached for the dispersionless

case, are also true when dispersion is accounted for.

The bandwidth characteristics for the highly transient case of tp=T2 ˆ 0:1 are
shown in ®gure 8. Here, the sluggishness of the UMRG frequency conversion

process is much more evident; the bandwidth generated at Z ˆ 200 is only just

over 20 waves of comparable energy. Once again, ®gures 8 (a) and (b) are for ®1 ˆ 0
and ®1 ˆ 2:5 £ 10¡3 respectively. In each case, transiency suppresses the growth of

the competing process. It should be stressed that the ®1 ˆ 0 solution continues to

grow in bandwidth if greater propagation distances are considered (Z > 200). A
feature which arose in recent analytical work [14] was the prediction that the initial
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(a) (b)

Figure 6. Growth in bandwidth of the multifrequency beam as a function of normalized
distance Z for transient conditions tp=T2 ˆ 10 (di� erent curves correspond to
di� erent initial levels of the competing process, as de®ned in ®gure 4): (a) the ®1 ˆ 0
solutions; (b) the ®1 ˆ 2:5 £ 10¡3 solutions.



stages of CW UMRG are essentially reproduced in the highly transient regime if
one makes the transformation of Z ! tpZ=T2. Thus, comparing ®gure 6 (a), one
sees that, for the quasi-CW case, Z ˆ 20 results in the generation of a bandwidth of
around 20 waves of comparable energy while, for tp=T2 ˆ 0:1, one requires
Z º 200 to attain the same bandwidth.

5. Conclusions

Recent experiments on UMRG in H2 gas have produced output spectra that
demonstrate competition between distinct Raman processes. We have undertaken
a theoretical investigation to ascertain whether such additional parasitic processes
necessarily accompany UMRG. We have derived a more general set of UMRG
model equations and, for competing processes that arise from background noise or
ASE, we have developed a simple analytical model that yields the e� ective gain±
length Zeff for a parasitic wave. Both full simulations and analytical results for a
worst-case scenario predict that competing processes arising from these sources
will remain below threshold. We have also studied the potentially more serious
problems which could arise from a portion of an input beam which is scattered o�
axis by the optical elements present. The importance of the initial intensity of this
o� -axis wave has been assessed in conjunction with the roles played by transiency
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(a) (b)

Figure 7. As ®gure 6, except that tp=T2 ˆ 1:

(a) (b)

Figure 8. As ®gure 6, except that tp=T2 ˆ 0:1:



and background dispersion. We have shown that the e� ciency and character of
UMRG, when driven by appropriately resonant and symmetric pumping, leads it
to be robust against such e� ects. Our analytical model predicts a strong depen-
dence of Zeff on the steady-state gain coe� cients involved. We expect that the use
of high-pressure H2 in experimental con®gurations has contributed to the appear-
ance of parasitic vibrational components. Another important consideration is the
dependence of the gain coe� cients on the polarization of the pump beams. Thus
experiments which have employed pump beams which are not linearly polarized
may also be susceptible to the growth of competing processes.
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