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Abstract

Numerical calculations of excess noise factors in low Fresnel number unstable resonators are described in detail.
Computed mode profiles in one transverse dimension together with associated Petermann K-factors are presented; dynamical
considerations such as injected wave excitation are also examined. The properties of the zero-order modes are consistent
with virtual source theory and with a simple formula for K based on a geometrical optics approximation. While virtual
source theory is asymptotic, we find that it can make good predictions for Fresnel numbers as low as unity. Full numerical
calculations are however needed to determine accurate mode profiles and K-factors in some regimes. A new technique for
calculating accurate higher-order mode profiles is also developed and this is employed to evaluate K-factor dependencies of
the first two higher-order even modes. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Unstable-cavity lasers permit a high extraction
efficiency through their large mode volume and a
knowledge of the properties of their modes has

w ximportant practical implications 1–3 . In quantum
optics, expansion of the cavity field in terms of a set
of modes facilitates the quantisation of each such
mode. However, unstable resonators, and some other
optical systems, can exchange energy with their en-
vironment and no natural set of such modes exists. A

Ž .‘‘mode’’ U s of an unstable-cavity laser thus refersm

to a self-reproducing field pattern of the resonator

1 Corresponding author. E-mail: g.mcdonald@ic.ac.uk

and is not the same as a mode of the fundamental
radiation field. Rather than power-orthogonal, such
modes are biorthogonal with respect to a set of

Ž . Žadjoint modes V s which represent modes propa-n
. w xgating in the opposite direction and satisfy 1–3

`

U s V s d ssA d , 1Ž . Ž . Ž .H m n n m n
y`

Žwhere sis transverse space reducing to just x in the
.one-dimensional case , m and n are mode indices

and A is a constant for the particular mode con-n

cerned. A direct consequence of the lack of power
orthogonality is that the laser noise is enhanced with
respect to the Schawlow–Townes prescription by the

0030-4018r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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Ž .excess noise factor the Petermann K-factor defined
as

1
Ks , 2Ž .

`
2< <U s V s d sŽ . Ž .H n n

y`

when the modes have been appropriately normalised
w x4 . This factor defines a widening of the fundamen-
tal spectral line and a limit to the coherence of the
laser. Whereas, in gain-guided lasers, values of K of
the order 2 can occur, excess noise factors of the
order 108 are predicted for high Fresnel number

w xunstable resonators 4,5 . On the other hand, for
Ž . ) Ž .stable resonators, V s approximates to U s , andn n

Ž .Eq. 1 reduces to the familiar power orthogonality
relationship. In this case, both A and K tend ton

unity and a laser mode approximates quite well to a
mode of the radiation field.

Another property of unstable-cavity lasers is that
optimal mode excitation is not achieved by conven-
tional mode-matching but rather by injecting the
profile that corresponds to the mode under time

w xreversal 1 . The power of the mode, when excited
by its adjoint, exceeds that when using matched-mode

Ž .excitation by the Injected Wave Excitation IWE
w xfactor, I. In Ref. 4 , we sought a physical interpreta-

tion of excess noise through its mathematical rela-
tionship to the IWE factor and a computer demon-
stration of the identity of K and I was presented.

w xThese ideas were developed further in Ref. 6 , where
a simple formula for I based on a geometrical optics
approximation was obtained.

Our previous theoretical work concentrated on
confocal unstable cavities with relatively high Fres-

Ž .nel numbers. In this regime, the virtual source VS
method provides an excellent approximation to the
mode profile and permits relatively accurate excess

w xnoise factors to be determined 4,5,7,8 . However, in
more recent experiments, resonators with much lower
Fresnel numbers have been employed and mode
profiles and K-factors have been measured for a

Žvariety of cavity geometries including different
aperture positions within the resonator and varying

. w xdegrees of non-confocality 6,9–12 . Moreover,
while the characteristics of both zero- and higher-
order modes have been studied, standard numerical

approaches only yield accurate results for zero-order
modes. On the other hand, sophisticated numerical

w xtechniques for generating higher-order modes 13
become prohibitively complex in the modelling of
particular recent experiments which have fully two-

w xdimensional transverse symmetries 11 . There is
therefore a need to develop a simpler method for
calculating accurate higher-order mode profiles as
well as to study cavities with low Fresnel number
and alternative geometries.

In this paper, we describe mode profile and K-
factor calculations in low Fresnel number unstable
resonators. The dependence of the excess noise fac-
tor on the two parameters characterising a confocal
cavity is mapped out in detail for the lowest-loss
mode. We also show how to apply our results to the
alternative configurations that have been used re-
cently in experiments. We derive explicit formulae
for this purpose. Our results are compared with the

Žpredictions of VS theory which is strictly only valid
w x.in the limit of high Fresnel number 8,14 and with a

simple geometrical model. Finally, we describe a
new technique that enables accurate higher-order
mode profiles to be generated and which permits the
K-factors, and associated IWE factors, of these modes
to be determined.

2. Theory

The resonator we model is the unstable confocal
cavity shown in Fig. 1. This consists of a convex
mirror of focal length f located a distance L from a
concave mirror of focal length f s fqL; the twoÕ

mirrors therefore have a common focus, satisfying
the confocality condition. Geometrical optics sug-
gests that a uniform plane wavefront XX approach-
ing the convex mirror from the left returns as an
expanding spherical wave YY to the concave mirror
where reflection returns it once more as a plane
wave travelling to the right; the process clearly
defines the magnification factor of the confocal res-
onator as Ms1qLrf. On each cavity transit, the

Ž .convex mirror half-width hsa apertures the circu-
lating field. One thus expects a fraction 1y1rM of
the energy in the resonator to be lost or, equiva-

Žlently, that a fraction 1rM the ‘‘round-trip confine-
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Fig. 1. The confocal unstable cavity modelled in this paper.
Concave and convex mirrors, spaced a distance L apart, share a
common focal point F and define a round-trip magnification of
M. The dynamics of the modal wavefronts of geometrical optics,
XX and YY, are also illustrated.

.ment factor’’ to be retained for the following transit.
The other key parameter of the resonator is the
Fresnel number which is derived for this and other
cavity geometries in the following section.

2.1. EquiÕalent confocal caÕity

In practice, the widths of the mirrors will rarely
be in the ratio of 1:M as drawn in Fig. 1. Instead,
there will normally be a single defining aperture in
the resonator which may or may not be one of the
mirrors and this determines the Fresnel number of
the optical system. There are in fact several different
definitions of Fresnel number; in this paper we use
the equiÕalent Fresnel number N which is giveneq

w xby 3

h2 M 2 y1
N s 3Ž .eq ž / ž /lB 2 M

where h is the half-width of the defining aperture
and B is the second element of the ABCD matrix
for a round-trip starting and finishing at the aperture
Ž .the reference plane .

For a confocal cavity in which the convex mirror
Ž .is the defining aperture, BsL 1qM rM and Eq.

Ž . Ž 2 .Ž .3 becomes N s a rlL My1 r2. On the othereq
Ž .hand, when the concave mirror half-width b is the

Ž .defining aperture, B s L 1 q M and N seq
Ž 2 .Ž .b rlL My1 r2 M. We note that these two for-
mulae for N are subtly different and do not yieldeq

the same result when bsMa, as one might perhaps

expect. Careful analysis of the diffraction mathemat-
ics shows however that, irrespective of which mirror
defines the aperture, the value of N determines theeq

mode profile scaled to the aperture dimension. In
Ž .other words, the transverse profile U xra realisedn

when the convex mirror is definitive is identical to
Ž .U xrb when the concave mirror is definitive, pro-n

vided N has the same numerical value in the twoeq

cases.
The relationship between confocal and non-confo-

cal cavities requires more detailed consideration. We
now write the total cavity length as LsL qd ,c

where L s f y f is the confocal separation of thec Õ

mirrors and d is an off-set. When the conÕex mirror
acts as the aperture in the system or, equivalently,
when a defining aperture is placed directly against
this mirror, the round-trip matrix takes the form

Ž . Ž .Ž .M q 1ydr f dr f L 1q M rM q 2 f yd dr fc Õ c c c Õ

,ž /ydr ff 1rM ydr fÕ c Õ

4Ž .

where, for clarity, we have denoted the magnifica-
tion of the ds0 cavity as M s f rf. On the otherc Õ

hand, when the aperture is at the concaÕe mirror, the
ABCD matrix is

M qdrf L 1qM q 2 f qd drfŽ . Ž .c c c Õ

.� 0ydrff 1rM y 1qdrf drfŽ .Õ c Õ

5Ž .

Notice that both matrices have the same half-trace
Ž . Žnamely m s A q D r2 s M q 1rM yc c

2 .d rff r2. This defines the round-trip magnificationÕ

Ž .which, for a positive branch resonator m)1 , is
2' w xgiven by Msmq m y1 3 .

To demonstrate how to apply confocal cavity
results to non-confocal configurations, we introduce
the concept of the ‘‘equivalent confocal cavity’’
Ž . w xECC 3 . By sandwiching the reference plane be-

Žtween a pair of self-cancelling thin lenses having
.equal but opposite powers z and yz respectively ,
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Ž . Ž .one can transform matrices 4 and 5 to have zero
Ž .C elements the formal characteristic of confocality .

The elements of the resulting ECC matrix are A seq
2 Ž .AyBz, B sB, C syBz q AyD zqC andeq eq

D sDqBz and the confocality requirement yieldseq
2< < (z s A y D y A y D q 4BC r2 B. TheŽ . Ž .

Ž .ECC clearly has the same value of m and hence M
Ž .as the non-confocal cavities represented by Eqs. 4

Ž .and 5 and, indeed, M can be read directly from the
Ž .transformed matrix MsA . Moreover, since Beq eq

sB, the equivalent Fresnel numbers of each ECC
and the corresponding non-confocal resonator are
also identical. However, since N depends on Beq

which, in turn, depends on both where the aperture is
placed and the degree of non-confocality, such as-
pects must be taken into account to determine the
correct ECC for any particular experimental arrange-
ment. We also note that, for the rare cases in which
both mirrors aperture the circulating field, an analy-
sis of a multi-aperture resonator would need to be
undertaken.

2.2. Simple geometrical model

Having established the relationship between ac-
tual resonators and their ECC, in the remainder of
this paper we will focus on the modelling of a
confocal cavity in which the convex mirror is the
defining aperture. Consider now what happens if the
direction arrows in Fig. 1 are reversed and the
converging profile YY injected into the cavity in-
stead. For the first few transits following injection,
the beam will be tightly confined along the resonator
axis and so will suffer minimal loss. Thus, when the
beam ultimately spreads out, and the mode is re-
established, it has gained a cumulative energy advan-
tage over the comparable mode-matched situation. It
can be shown that this enhancement factor, which is

Ž .known as the Injected Wave Excitation IWE factor
I, is mathematically identical to the excess noise

w xfactor K 1 .
The identity between I and K not only provides

an alternative route to the calculation of K-factors,
but also lends itself to a physical interpretation of

w xexcess noise 4 . If, following time-reversed injec-
Žtion, the switch from minimal loss beam confine-

.ment to the loss associated with the cavity mode is
assumed to be sudden, occurring t transits after
reversal, then geometrical optics and elementary

w xdiffraction theory predict 6

2 22ln M a rlL
t, . 6Ž .2ln MŽ .

Hence, if the energy advantage in favour of excita-
tion by the time-reversed beam is M per transit, as
argued above, an approximate expression for the
IWE factor is

M 2a2
tI,M s . 7Ž .

lL

2.3. Numerical techniques

While geometrical arguments lend insight into
mode dynamics and excess noise, more sophisticated
numerical techniques need to be deployed to com-
pute an accurate mode profile and K-factor for any
particular values of the round-trip magnification and
the equivalent Fresnel number. Our approach is to
start with an estimate of the mode profile using

Ž . w xvirtual source VS theory 8 . This involves an
unfolding of the cavity into a series of effective
apertures, the separations and sizes of which depend
on both M and N . Assuming that a distant planeeq

wave is incident on the unfolded system, one can
build up an estimate of the cavity mode profile from
a weighted sum of first-order diffractive edge-waves

Žfrom each of the effective apertures and an undif-
.fracted geometrical component. The solution ob-

tained in this manner is in closed form and the
method, albeit approximate, is computationally very
efficient.

This initial estimate of the mode profile is then
refined by an iterative scheme based on the applica-
tion of a Huygens–Fresnel integral and aperturing
for each cavity round-trip. Two closely-related Fast

Ž .Fourier Transform FFT techniques are available for
w xthis purpose 3 . The faster of the two techniques

effects a round trip with a single FFT but imposes an
awkward constraint on the mesh size which results
ultimately in lower overall accuracy in the calcula-
tions. We thus use the slower, but more flexible,



( )G.S. McDonald et al.rOptics Communications 164 1999 285–295 289

alternative that uses two FFTs per transit since it
gives more reliable results.

Once a particular mode is established, the field
profile satisfies the self-consistency condition

Žkq1.Ž . Žk .Ž .U x sgU x , where k is an index denoting
Ž .transit number and g is the complex mode eigen-

value. The profile of the corresponding adjoint mode
is then determined from

2 < <V x sU x exp yi2p N xra , x FaŽ . Ž . Ž . Ž .n n eq

< <s0 x )a . 8Ž . Ž .
Finally, the excess noise factor K is found by substi-

Ž . Ž . Ž .tuting U x and V x into Eq. 2 . The computa-n n

tional scheme is thus similar to the well-known
w x‘‘power method’’ 15 , but the iterative stage does

not start from an arbitrary initial profile. Moreover,
while the power method can only find the zero-order
mode, we will later show how the method can be
extended for the determination of higher-order
modes.

3. Results

In this section, we compute the mode profiles and
associated K-factors of low N unstable cavities andeq

compare our results with the predictions of VS the-
ory and the simple geometrical model. Dynamical
considerations and the calculation of accurate
higher-order mode profiles are then discussed.

3.1. Zero-order modes

wUnstable cavities used in recent experiments 6,9–
x11 have had magnifications between 1 and 2 and

equivalent Fresnel numbers in the range N s0.2 toeq

3.0. We now present results of the first systematic
K-factor study in this regime based on full-scale
simulations. Fig. 2 displays K-factors of the zero-
order mode as a function of N for Ms1.2 to 1.4eq
Ž . Ž .frame a , Ms1.5 to 1.7 frame b and Ms1.8 to

Ž .2.0 frame c . Each curve is derived from a large
number of individual simulations in which an initial
estimate of the mode profile has been refined over
hundreds, or thousands, of cavity transits to give
convergence of the K-factor to within 1%. The

Fig. 2. The dependence of excess noise factor on equivalent
Fresnel number for zero-order modes. Thick solid, thin solid and

Ž .dotted curves are plotted in order of increasing magnification .
Ž . Ž . Ž .a Ms1.2,1.3 and 1.4, b Ms1.5,1.6 and 1.7, and c Ms
1.8,1.9 and 2.0.

positions of the peaks of the curves are seen to
remain approximately invariant under variation of M
and reside near integer values of N . However, theeq

magnitude of individual peaks is strongly dependent
on M. We note that K-factors at the peaks and
troughs of the curves rise with increasing N in theeq

Ž .range Ms1.2 to Ms1.6 frames a and b in Fig. 2,
but that this trend is not universal since it does not
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apply in frame c. The most common experimental
configurations have approximately square transverse
symmetry and the corresponding K-factors are given

w xby the square of the 1D results 5 . Thus, K-factors
of the order 104 are predicted for low N resonatorseq

with only moderate values of M.
Using the eigenvalues determined in the above

simulations, we can now refine the expression for I
Ž .in Eq. 7 by replacing the round-trip confinement

< < 2factor of a mode 1rM with g . This ‘‘hybrid’’
value of I is therefore

< <y2 tI , g 9Ž .hybrid

where the term ‘‘hybrid’’ is appropriate because t is
still based on the simplified arguments that led to Eq.
Ž .6 . Fig. 3 shows K-factor predictions for the zero-
order mode in a resonator with Ms1.5 and N ineq

the range 1.5 to 5.5. The solid line shows values
Ž .calculated using Eq. 2 and profile data from simu-

lations, while the upper dotted line charts the IWE
Ž .factor predicted by the approximate Eq. 9 . The two

curves show the same qualitative dependence, but
the simple model gives values that are up to a factor

Ž .of 2 too high. Recall however that Eq. 9 is based
on the assumption that the transition from no loss to
full loss of the time-reversed wave occurs suddenly,

Ž .t transits after time reversal. On the basis of Eq. 6 ,
Ž .t which is not assumed to be an integer increases

monotonically from 6.4 to 9.6 with increasing Neq

over this range. But if this estimate is just one transit
too high, the effect is to shift the curve downwards
to the lower dotted line of Fig. 3, which is in much

Fig. 3. A comparison of K-factor predictions using the simple
Ž .geometrical model dotted curves and profile data from full-scale

Ž .simulations solid curve .

Ž .Fig. 4. Transverse profiles of zero-order modes for Ms1.5. In a
Ž .N s2.8 while b is for N s2.9. The vertical lines at xs a areeq eq

drawn to show which portion of the mode is retained for the
following transit. Profiles predicted by virtual source theory are

Ž < <also plotted re-normalised to give a best fit over x - a and
.shown as dotted curves .

better agreement with the computed values of K ,
especially for higher values of N . Profile evolutioneq

following time reversal is actually so complex that
Ž .the remarkable feature of Eq. 9 is its accuracy.

The sharp peaks evident in Figs. 2 and 3 arise due
to ‘‘mode crossings’’, where there is a change in the
eigenmode which has lowest loss. These crossings
are accompanied by sudden changes in the overall
character of the mode, a point clearly illustrated in
Fig. 4 where the very different mode profiles at
N s2.8 and N s2.9 are displayed. VS theory caneq eq

provide considerable insight into some of the qualita-
Žtive features of mode profiles predictions are shown

.as dotted lines in this figure . However, we find that
inaccuracies can arise in the low N regime; indeedeq

a comparison of frames a and b indicates that its
accuracy depends on the precise value of N andeq
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that errors appear well inside the ‘‘shadow bound-
< <ary’’ at x sMa. Since K depends very sensitively

on the detail of the mode profile, even the more
< <minor discrepancies below x sa would lead one to

expect significant errors in excess noise predictions.
Moreover, we have already re-normalised the VS
data shown to give the best fit in this region and
such normalisation problems are likely to introduce

w xfurther errors in the calculated K-factors 4 .
Frame b of Fig. 4 shows slightly better agreement

Ž .over that of frame a between VS theory and com-
< <putational results for x -a. This improvement is

not solely attributable to the existence of a nearby
Žexcess noise peak small changes in N are gener-eq

.ally found to affect the level of agreement , but
computational difficulties can indeed occur in such
regions. Close to mode crossings, the VS method can
predict the ‘‘wrong’’ member of an eigenmode pair.
In this case, the profile is unstable under iteration
and many thousands of transits may be required
before the switch to the ‘‘correct’’ mode is com-

w xpleted. VS theory was used in Ref. 6 to map out
K-factor dependence on N for Ms2.0. Making aeq

direct comparison of the full computational data
Ž .from Fig. 2 c and those published approximate re-

sults, we find that the overall agreement is actually
much better that one would expect. However, the
most significant disagreement is in the magnitude of
the K-peak near N s5 which is 25% larger thaneq

previously predicted. In the corresponding resonator
with a square aperture the difference in predictions
would thus be 50%. Nevertheless, a detailed exami-
nation of our data for the particular parameters perti-

w xnent to recent experimental configurations 6,9–11 ,
reveals that the virtual source method produces suffi-
ciently accurate predictions that the conclusions
drawn from those studies remain unchanged.

3.2. Mode dynamics

The full computational model also allows one to
generate accurate values of the IWE factor. A mode
is first established by allowing the field profile to
evolve over many round-trips until the self-con-
sistency condition is satisfied to sufficient accuracy.

Ž .This mode is then time reversed by replacing U xn
) Ž . Ž .by V x and, on each subsequent transit as U xn n

is being re-established, the degree of energy confine-
ment is computed from

< Žkq1. < 2U x d xŽ .H
T s . 10Ž .kq1

2Žk .< <U x d xŽ .H
< < 2Since g is the confinement factor that the mode

would experience if time reversal had not occurred,
< < 2A sT r g is the relative energy advantage onk k

transit k of time-reversed excitation compared to
mode-matching. The cumulatiÕe energy advantage
over N transits, is then clearly

N

I s A . 11Ž .ŁN k
ks1

< < 2Since T ™ g and A ™1 as the steady-state modek k
Ž .profile is approached, the product in Eq. 11 sta-

bilises as N™`; the IWE factor is given by this
asymptotic value I .`

Computation of I is shown in Fig. 5 for Ms1.5N

and N s4.0. The VS approximation to the mode iseq

refined over 100 transits until fluctuations in K , as
Ž .predicted by Eq. 2 , have been eliminated and the

Žvalue stabilises at Ks16.87 the dotted line in the
. Ž .figure . After this refinement, U x is replaced byn

) Ž .V x and subsequent values of I are plotted as an N

solid line. As expected, this approaches the value of
K as N™` and the original mode profile is re-
stored. The oscillations in I in the aftermath ofN

Ž .Fig. 5. Calculation of the excess noise factor K dotted curve and
Ž .injected wave excitation factor I solid curve for a zero-order

mode. An estimate of the mode profile is refined over 100 transits,
then time reversal is implemented. During transits 100 to 200, the
accumulative energy advantage of adjoint excitation I is plotted.N
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Ž . Ž .time reversal help to explain why Eqs. 7 and 9
can only be expected to yield approximate values,
since they assume a sudden switch from no loss to

Ž .full loss. In more quantitative terms, Eq. 6 predicts
a value of tf8.8 and Fig. 5 gives I f27 at thisN

point, which is very close to the geometrical model
prediction of Kf26.

3.3. Higher-order modes

The computational scheme, as described so far, is
only capable of finding the zero-order mode. The
sole flexibility is the imposition of symmetry on the
solution, which permits even or odd modes to be
calculated. We now describe a simple procedure that
we have developed to get around this restriction.

Suppose that, on the k th cavity transit, the field
Žk .Ž .profile U x consists of a superposition of six

Ž Ž .modes the zero-order mode U x and five higher-0
Ž . .order modes U x , j)0 so thatj

5
Žk .U x s a U x , 12Ž . Ž . Ž .Ý j j

js0

where a are complex constants. If g are the respec-j i

tive eigenvalues, the profile after N subsequent tran-
sits will then be

5
ŽkqN . NU x s g a U x . 13Ž . Ž . Ž .Ý j j j

js0

As demonstrated earlier, if the evolution is allowed
to proceed naturally then the profile converges to

Ž .one which is proportional to U x because, by0

definition, this mode has the eigenvalue with highest
modulus. However, if the aim is to find the first
higher-order mode, one can formally eliminate

Ž . Ž . Ž .a U x from Eqs. 12 and 13 to find0 0

1
Ž . Ž .k kq1a U x s g U x yU xŽ . Ž . Ž .1 1 0

g yg0 1

5

q g yg a U x . 14Ž . Ž . Ž .Ý j 0 j j
js2

Žkq1.Ž .The effect of replacing U x by this expression
is to eliminate the zero-order mode from the total

Ž .field, leaving a U x and components involving1 1

higher-order modes. These latter components are
likely to be enhanced relative to their magnitude in

Ž . < < < < < <Eq. 13 because g ) g and g yg will prob-j jq1 j 0
< <ably, though not necessarily, exceed g yg . How-0 1

Ž .ever, the lower magnitudes of g j)1 relative toj

g ensure that these unwanted modes die away1

naturally in subsequent evolution. Indeed, provided
sufficient time is allowed for this process to occur,

Ž .interventions using Eq. 14 can be made at regular
Ž .intervals, allowing increasing refinement of U x .1

The implementation of this procedure seems, at
first sight, to require knowledge of more information
about the system than has previously been deter-
mined. But, in fact, the crucial component in the

Žk .Ž . Žkq1.Ž .operation is simply g U x yU x , which0

only involves the eigenvalue of the zero-order mode
Ž .already known and the field profile on subsequent

Ž .cavity transits. Thus, for practical purposes, Eq. 14
can be reduced to

U x ;g U Žk . x yU Žkq1. x . 15Ž . Ž . Ž . Ž .1 0

Our method is also easily extended to the higher-order
Ž .mode profiles U x where i)1. In the determina-i

tion of the second higher-order mode, we find that
Ž .Eq. 15 generalises to

U x ;g g U Žk . x y g qg U Žkq1. xŽ . Ž . Ž .Ž .2 0 1 0 1

qU Žkq2. x . 16Ž . Ž .
Again, it is important to note that the only prior
knowledge required is the eigenvalues of the lower-
order modes. For the third higher-order mode, it can
be shown that the appropriate formula for interven-
tion is

U x ;g g g U Žk . x y g g qg g qg gŽ . Ž . Ž .3 0 1 2 0 1 0 2 1 2

=U Žkq1. x q g qg qg U Žkq2. xŽ . Ž . Ž .0 1 2

yU Žkq3. x . 17Ž . Ž .
Ž . Ž .Eqs. 15 – 17 are effective weapons in the compu-

tation of higher-order mode profiles. In Fig. 6, we
present results from a simulation in which the first
higher-order even mode is calculated. VS theory

Ž .provides an initial estimate of U x but subsequent1

evolution can be seen to be highly unstable. After 30
Ž .transits, however, we intervene using Eq. 15 and

quasi-stable evolution of the desired mode is at once
Ž .achieved. The improvement in the accuracy of U x ,1

over the VS estimate, is clearly reflected in the
contrasting evolutions of the K-factor during the
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Ž . Ž .Fig. 6. Calculation of K dotted curve and I solid curve for the
first higher-order even mode when Ms1.5 and N s4.0. Timeeq

reversal is implemented at transit 70 and the evolution is stabilised
by interventions at transits 30 and 79.

subsequent iterative stages of the computational
Žscheme. After a further 40 round-trips transit 70 in

.Fig. 6 , the mode is time reversed and computation
of I is commenced. Without further intervention,N

the evolution would once again run away towards
Ž . Ž .U x . However, a further application of Eq. 15 at0

transit 79 suppresses the zero-order mode and halts
the monotonic rise of I , causing both the solid andN

Ž .dotted lines I and K , respectively to stabilise atN

the correct value of the excess noise factor for the
mode in question. We stress that the points at which
one intervenes are fairly arbitrary. The initial inter-
vention could therefore take place at almost any
time, as could the intervention following time rever-
sal.

Finally, we give an overview of results for the
first two higher-order even modes from calculations
using the above intervention formulae. The depen-
dencies of K on N for the case Ms1.5 areeq

Ž .presented in Fig. 7. Part a shows K-factors for
Ž . Ž .U x and part b gives the corresponding results for1
Ž .U x . In each part, we also plot the curve for the2

Žzero-order mode to facilitate comparisons shown
.dotted . It can be seen that, while the zero-order

mode has the lowest loss, it does not necessarily
have the lowest K-factor. Indeed there are regions
where this distinction falls to the second higher-order
mode. Thus, we would not expect the simple geo-
metrical model to make accurate predictions for the
higher-order modes because it relates the magnitude
of excess noise directly to eigenvalue modulus.

The overall variations with respect to N areeq

found to be much more complex than in the zero-
order case. Sudden jumps are evident and arise due
to a more complicated pattern of mode crossings. A

Ž .comparison of the curves in Fig. 7 a reveals the
Ž . Ž .underlying interplay between U x and U x ; con-0 1

firming the origin of the peaks shown in Figs. 2 and
3, and also that the intervention technique is indeed
finding the correct higher-order mode. Frame b of
Fig. 7 displays several apparently isolated sections of
curve. Such features would be seen to be due to the
intersection of continuous curves if the K-factors of

Ž . Ž .other higher-order modes, such as U x and U x ,3 4

were also plotted. The large number of discontinu-
ities present indicates that the K-factors of individual
higher-order modes are not particularly distinct in
the low N regime.eq

When the three lowest-loss modes have compara-
ble K-factors, they do not necessarily have similar

Fig. 7. The dependencies of excess noise factor on equivalent
Ž . Ž .Fresnel number for a the first higher-order even mode, and b

the second higher-order even mode. In each part, the correspond-
Ž .ing data for the zero-order mode is also shown dotted curve .
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Ž . Ž .Fig. 8. Transverse profiles of a the zero-order mode, b the first
Ž .higher-order even mode and c the second higher-order even

mode for Ms1.5 and N s3.0. The vertical lines at xs a giveeq

an indication of the level of losses experienced by each mode.

profiles. This is clearly evidenced in Fig. 8 where
profiles are compared at N s3.0 and the K-factorseq

are respectively 9.7,12.2 and 11.2. A much more
generic distinction between the profiles of the modes
arises from the level of diffraction losses that each
experiences. Fig. 8 shows that the lower loss of

Ž .U x is consistent with its energy being more con-0

centrated around the resonator axis, whereas mode
Ž . Ž .U x is weak around xs0 and U x is predomi-1 2

nantly off-axis.

4. Summary

Techniques for computing mode profiles and their
associated Petermann K-factors and Injected Wave

Ž .Excitation IWE factors in an unstable confocal
resonator have been described in detail. By introduc-
ing the idea of an equivalent confocal cavity, we

have shown how the results can be applied to a
wider range of experimental configurations. The first
systematic investigation of K-factors of low Neq

resonators, based on full-scale simulations, has been
undertaken. Excess noise factors of the order 104 are
predicted for moderate values of round-trip magnifi-
cation.

Results for the zero-order mode were found to be
consistent with the predictions of virtual source the-
ory and a simple formula based on a geometrical
optics approximation. Even though virtual source

Žtheory is asymptotic in nature technically only valid
.for large N , we have found that it generally yieldseq

reliable results for N as low as unity. This is aeq

somewhat surprising result and an important conclu-
sion, since the virtual source method is relatively
simple to program and is computationally very effi-
cient. However, for some specific parameter values,
full numerical simulations are necessary to determine
accurate mode profiles and K-factors. The sensitivity
of predictions of the geometrical model to the pre-
cise value of t was highlighted and discrepancies
were found to be of no great significance given the
severity of the approximations made and the com-
plexity of the IWE process. Finally, a new technique
has been presented which permits accurate higher-
order mode profiles to be calculated. Only a rela-
tively straightforward modification of the ‘‘power
method’’ and knowledge of the lower-order mode
eigenvalues is required. The technique was used to
map out K-factor dependencies of higher-order even
modes.

This paper provides the foundations for a forth-
coming publication in which the role of fully two-di-
mensional transverse symmetry in determining mode
patterns and K-factors in the low N regime iseq

investigated. Work is also currently under way on
applications of virtual source theory and intervention
techniques in the transverse plane.
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