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Abstract—We study the performance of a nonparaxial beam 

propagation method accelerated using massively parallel 
computation in graphic processing units.  The implementation is 
tested in two different NVIDIA hardware architectures, Tesla 
and Fermi, and the results are compared with a CPU-based 
parallel implementation using Open MPI. 
 

Index Terms—Nonparaxial nonlinear beams, Helmholtz 
solitons, massivelyl parallel processing.  
 

I. INTRODUCTION 
FFICIENT and accurate nonparaxial numerical solutions 
of the propagation of optical beams in nonlinear media [1] 
have served as the cornerstone of extensive analytical and 

computational research on Helmholtz solitons [2-9].  This 
numerical scheme has also been assessed against the full 
solution of Maxwell equations in the time domain using the 
Transmission Line Matrix (TLM) method [10].  Both the 
time-domain [10] and complex envelope numerical methods 
[11] have been parallelized and tested in various types of 
architectures.    

Here, we present the results of numerical investigations on 
nonparaxial beam propagation in nonlinear optical media 
using graphics processing units (GPUs).  The numerical 
method described in [1] makes extensive usage of the FFT 
algorithm and is particularly well suited for its implementation 
in GPUs.  We make a performance evaluation of the GPU 
implementation in an NVIDIA Tesla C1060 and a (Fermi 
architecture) NVIDIA GTX 480 GPU.  The results are 
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compared with those obtained from an implementation in a 
shared-memory CPU parallel architecture.  

II. NONPARAXIAL NONLINEAR BEAM PROPAGATION  
 

The propagation of the field envelope ( )ζηξ ,,u of a scalar 
continuous-wave (CW) optical beam in a nonlinear dielectric 
medium is accounted for by the equation [1] 
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where f is a function of  the beam intensity and the spatial 
coordinates that defines the medium nonlinearity and any non-
homogeneity that may be present associated either to its linear 
or nonlinear dielectric properties.  The transverse (x,y) and 
longitudinal (z) coordinates are normalized according to a 
reference Gausian beam of waist w0 and diffraction length 
LD=kw0

2/2 as  
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κ=1/(kw0
2) is a parameter associated to the degree of 

nonparaxialiaty of the beam.  Equation (1) is fully equivalent 
to the corresponding nonlinear Helmholtz equation [2].  If the 
term κ∂ζζu is neglected in Eq. (1) one recovers the paraxial 
nonlinear wave equation.  This term can be neglected in the 
nonlinear evolution equation if three conditions are fulfilled 
[2]: (i) That the beam is not too narrow (in comparison with 
the optical wavelength),  so the angular spectrum is limited to 
the paraxial region, (ii) that the beam peak intensity is not too 
large and (iii) that the beam propagates very close to the 
optical axis.  Under typical nonlinear propagation conditions, 
(i) and (ii) are intimately linked.  So, there are two distinct 
situations that may lead to a strong nonparxiality in the 
propagating beam:  strong focusing of ultra-intense beams, 
which result in a large broadening of the angular spectrum, or 
the propagation of broad beams (in terms of the wavelength) 
with large angles relative to the optical axis.   The validity of 
Eq. (1) is questionable in the high-intensity nonparaxial 
scenario, where polarization [1] or other high-order effects are 
expected to come into play and, possibly, dominate the 
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nonparaxial correction itself.  Nevertheless, the widely 
accepted conditions that assure the accuracy of the scalar 
treatment of the optical field are the same for the paraxial 
equation and Eq. (1) when nonparaxiality has an angular 
origin.    
 When restricted to the (1+1)D case, Eq. (1) describes the 
evolution TE-polarized soliton beams under nonparaxial 
conditions of the angular type, which has also been termed as 
Helmholtz nonparaxiality.  This model equation has been 
shown to hold exact bright [2] and dark [3] soliton solutions, 
multi-component [4] and also solitons in non-Kerr nonlinear 
media [5,6].  Furthermore, even though the evolution equation 
is non-integrable [7], several analytical properties of its 
solutions:  transformation invariance [2] and conserved 
quantities [2,5] have been derived.  These Helmoltz soliton 
generalizations of paraxial optical solitons permit to deal with 
relevant situations with an intrinsic strong angular character, 
such as the interaction of spatially multiplexed optical beams 
[7] or the refraction of bright and dark optical solitons at 
nonlinear interfaces [8,9]. 

The study of the propagation and stability properties of 
Helmholtz solitons has relied heavily on intensive numerical 
simulations [2-9].  In turn, the existence of exact solutions and 
the knowledge of their analytical properties has played a key 
role in the development of the required accurate numerical 
tools [1].  The nonparaxial algorithm employed in the 
numerical investigations is based on the solution of the 
difference-differential equation [1]      
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where operator Ô has two components: the transverse 
diffraction term  2

ξη∇ and a filter that eliminates the 

evanescent backward propagating components of the beam 
angular spectrum that would result in numerical instability [1].  
Operator Ô is evaluated in the spectral domain.   

III. RESULTS AND DISCUSSION 
 

There are three basic ingredients in the propagation step 
described by (3) that must be taken into account: (i) 
Computation of direct and inverse Fourier transforms using 
the FFT algorithm, (ii) point-wise matrix multiplications both 
in the spatial and transformed domains and (iii) complex 
additions. Even though more elaborate approaches are under 
progress, here we focus on radix-2 FFTs and well-established 
state-of-the-art libraries for their parallel computation:  the 
MPI parallel version of the FFTW library [12] (version 3.3) 
for CPU computations and the NVIDIA CUFFT library [13] 
for  GPU computations.   

For the CPU parallel implementation of the whole 
algorithm (3), we have used C and Open MPI as message 

passing library.  NVIDIA CUDA C extensions have been used 
for the GPU calculations.  In this latter case, all the 
calculations involved are computed using CUDA kernels and 
take place within the GPU device.  

   
 

 
 

 
 Two different devices have been used for the assessment of 
the GPU acceleration.  A NVIDIA Tesla C1060 (1.3 compute 
capability) hosted on a Intel i7 at 2.67 GHz with 8 GB of 
memory and Ubuntu 9.04 (Jaunty) operating system and a 
Fermi architecture NVIDIA GeForce GTX 480 (2.0 compute 
capability) hosted on a Intel Core2 Quad CPU Q8400 with 4 
GB of memory  at 2.66 GHz and Ubuntu 10.10 (Maverick) 
operating system.  The allocation of the GPU resources has  
been performed using the CUDA occupancy calculator 
provided by NVIDIA [13].  Both the sequential and parallel 
CPU calculations are performed on the same i7 CPU where 
the Tesla C1060 is hosted.  

Fig. 2.  Logarithmic plot of the floating point double precision computation
time for one step of the numerical scheme calculated on a run of ten thousand 
iterations.   

Fig. 1.  Logarithmic plot of the floating pointing single precision 
computation time for one step of the numerical scheme calculated on a run
of ten thousand iterations.  
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In order to assess the computational efficiency of the 
nonparaxial propagation scheme in the various architectures, 
the (real) total execution time for a fixed number of ten 
thousand steps is calculated.  From this, the computation time 
per iteration is estimated.   

 

 
  

 
 

Figures 1 and 2 display the total computation time per 
iteration step for single and double precision, respectively, as 
a function of the number of data points.   Whereas the 
sequential computational time grows exponentially starting 
from small numbers of data points, the parallel executions 
always show a small growth in the computing time for small 
problem sizes.  This effect is due to the initialization time of 
the GPU devices and MPI.  In all cases, the initialization 
overhead for the MPI is larger than for the GPU devices.  For 
single precision calculations, this overhead is very similar for 
the Fermi and Tesla architectures, whereas in the case of 
double precision calculations, the Tesla architecture displays 
larger values of this parameter.  For N≥215, the growth of the 

computation time with the problem size is approximately 
exponential.  In this regime, parallel CPU calculations with 
eight processors are more efficient that sequential 
calculations, but the performance is largely improved by using 
GPU acceleration hardware.   Quite remarkably, the 
improvement increases as the problem size grows.   
 It is expected that Tesla and Fermi GPUs perform in a 
similar manner for single precision calculations and about a 
fourfold improvement in the Fermi hardware for double 
precision [13].  Nevertheless, as shown in Figure 1, the 
NVIDIA GTX 480 displays better performance that the Tesla 
C1060 even for single precision calculations as the problem 
size grows.  The details of the speedup obtained relative to the 
sequential calculations for N≥215 are shown in Figures 3 and 
4. 

IV. CONCLUSION 
We have carried on a survey on the acceleration of a widely 

used nonparaxial nonlinear beam propagation algorithm 
obtained using GPU hardware relative to CPU hardware for 
sequential and parallel execution.  The results have permitted 
to compare two distinct GPU architectures and have 
demonstrated an impressive computational performance leap 
gained from the use of massively parallel NVIDIA GPUs.  
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