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Abstract: A model is proposed for describing the evolution of coupled optical waves in nonlinear 

systems with both spatial and temporal dispersion. New results include exact analytical bright-

bright solitons and an investigation of modulational instabilities. 
OCIS codes: (060.5530) Pulse propagation and temporal solitons; (190.4370) Nonlinear optics, fibers 

 

1. Modelling spatial dispersion in vector contexts 

Menyuk’s seminal analysis from 1987 [1] has undeniably helped lay the foundations of today’s understanding of 

coupled optical modes in nonlinear systems.  Rooted in the conventional “slowly-varying envelope approximation 

(SVEA) + Galilean-boost” formalism, a plethora of vector Schrödinger-type models have been developed and 

investigated exhaustively over the past two decades.  While the SVEA remains a cornerstone of traditional photonics 

modelling, Bianacalana and Creatore [2] have pointed out that there exist modern contexts where its validity may be 

reassessed.  In particular, they assert that spatial dispersion (for example, related to light-exciton coupling inside 

superlattice structures) is not necessarily well-described by the SVEA. 

In a recent paper [3], we proposed a model for describing scalar pulses in the presence of spatiotemporal 

dispersion based on the more natural Helmholtz-type governing equation.  In this presentation, we generalize that 

pproach to accommodate the simultaneous propagation of two optical modes.  For a Kerr nonlinearity, the 

dimensionless wave envelopes uj (with j = 1 and 2) satisfy   
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where (,) are normalized laboratory time and (longitudinal) space coordinates. Here, j << O(1) and sj = O(1) 

parametrize spatial and temporal (i.e., group-velocity) dispersion, respectively, while j is related to the group 

velocity and  determines the nonlinear (cross-phase) coupling between the two modes.  As with its scalar 

counterpart [3], frame-of-reference considerations play a key role and space-time transformations dominate much of 

our analysis of Eq. (1).  Of particular interest here are the exact stationary solutions and their stability, where the 

j∂
2
/∂2

 derivatives introduce surprising new parameter complexities into the problem. 
 

 
Fig. 1.  Typical results from simulations using exact conventional bright-bright solitons as initial conditions in Eq. (1) with 1 = 

103 and 2 = 2.5×103. (a) Peak amplitude of u2 with s1 = 1.0 and s2 = 1.2.  (b) and (c):  Evolution when s1 = 1.0 and s2 = 0.8.  

2.  Bright-bright solitons 

Exact analytical bright-bright solitons of Eq. (1) have been derived by combining ansatz methods with geometrical 

transformations in the (,) plane [3].  The two components form a bound stationary (i.e., propagation-invariant) 



state, with maximal overlap for cross-phase modulation occurring when they possess the same velocity and temporal 

duration.  These two physical constraints mean that constituent pulse peak intensities and frequency shifts cannot be 

chosen independently.  For any set of system parameters (i.e., j, j, sj, and ), one typically specifies two peak 

intensities and one frequency shift; the remaining frequency shift is then uniquely determined in order to match 

velocities and pulse widths.  Simulations have demonstrated that the new spatiotemporal solutions are often robust 

entities, propagating with invariant form over arbitrarily-long distances.  Initial conditions for Eq. (1) corresponding 

to exact conventional solutions may also evolve into these stationary solutions as  → ∞ (see Fig. 1). 

Asymptotic analysis of our new solutions has revealed that the predictions of the conventional model [obtained 

by neglecting the first term in Eq. (1)] can be recovered in an appropriate multiple limit.  It is at this stage that one 

may introduce a Galilean-type boost [transforming to a local time frame moving at the average group speed: loc =  

and loc =  –avg, where avg ≡ (1 + 2)/2].   The classic Menyuk model and its solutions [1] can then be found by 

setting s1 = s2 = +1.  In this sense, conventional pulse theory emerges from our spatiotemporal model in much the 

same way that Newtonian mechanics corresponds to the low-speed limit of relativistic kinematics [4]. 

3.  Modulational instabilities & dark solitons 

Having derived families of exact analytical bright-bright solitons and investigated their stability properties, we are 

also interested in more sophisticated vector solutions with at least one dark (e.g., tanh-type) component [5,6].  Such 

solutions are of most physical interest (e.g., can be deployed in photonic device architectures) when the associated 

continuous-wave (cw) background fields are stable against small spontaneous fluctuations (e.g., from noise).  

Accordingly, we have performed a linear analysis of the vector cw solution of Eq. (1) to quantify the modulational 

instability (MI) spectrum and predict the most-unstable frequencies in the system [1,7].  Instabilities turn out to be 

described by the roots of an eighth-degree polynomial characteristic equation (which can only be solved 

numerically), and the results for long-wavelength perturbations map directly onto those predicted by the 

corresponding conventional model [see Figs. 2(a) and 2(b)].  Crucially, no MI has so far been found when the 

group-velocity dispersion (GVD) coefficients are both negative.  It is in this regime where our current research 

efforts are focused to uncover exact dark-dark spatiotemporal solitons; like their bright-bright analogue, 

conventional dark-dark solitons [6] also appear to be unstable in the context of Eq. (1) [compare Figs. 1(b) and 2(c)]. 
 

 
Fig. 2. (a) Typical long-wave MI spectrum for the cw vector solution in the GVD regime s1 = 1.0 and s2 = 1.5.  (b) Extensive 

simulations have confirmed the theoretical prediction for the most-unstable frequency, denoted by P0 [related to the dominant 

peak in part (a)].  (c) Instability of an exact conventional dark-dark soliton when used as an initial condition in Eq. (1). 
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