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Abstract

Exact analytical results are employed in the testing of split-step and finite difference approaches to the numerical
solution of the non-paraxial non-linear Schrodinger equation. It is shown that conventional split-step schemes can lead
to spurious oscillations in the solution and that fully finite difference descriptions may require prohibitive discretisation
densities. Two new non-paraxial beam propagation methods, that overcome these difficulties, are reported. A modified
split-step method and a difference-differential equation method are described and their predictions are validated using
dispersion relations, an energy flow conservation relation and exact solutions. To conclude, results concerning 2D
(transverse) beam self-focusing, for which no exact analytical solutions exist, are presented. © 2001 Published by

Elsevier Science B.V.
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1. Introduction

Spatial solitons are ideal candidates for binary
elements in future optical information technology
(IT) systems [1-11]. While soliton beams are usu-
ally solutions of paraxial wave equations, such as
the non-linear Schrodinger equation (NSE), many
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important IT applications involve the breakdown
of the paraxial approximation. Non-paraxiality
may arise in the miniaturisation of devices and
in other configurations, such as those involving
multiplexed beams [12]. The non-paraxial non-
linear Schrodinger equation (NNSE) has recently
been shown to have exact analytical solutions [13]
and general relations describing energy flow con-
servation and transformation invariance have also
been derived [14]. Numerical studies are necessary
to address key questions surrounding the stability
and generation of solutions of such non-linear
wave equations, but different algorithms for non-
paraxial propagation problems have tended to
yield distinct results [14-18].
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Our exact analytical work has, for the first
time, permitted the development and testing of
existing and new non-paraxial beam propagation
methods. Fundamental and higher order paraxial
solitons have been found to be unstable in non-
paraxial regimes [14]; launching of a fundamen-
tal paraxial soliton leads to re-shaping during
propagation while higher order solitons tend to
break up. This latter instability exhibits an in-
triguing bifurcation structure that appears to be
of a general nature [14,19,20]. The correspond-
ing analytical solutions of the NNSE exhibit
solitonic robustness with respect to perturbations
and act as attractors in non-linear beam evolution
[14].

In this paper, we give a detailed account of two
novel beam propagation methods that yield accu-
rate results in non-paraxial regimes. A commonly
used spectral approach [18] is shown to give rise to
large deviations from the true solution; our first
numerical method is a modified version of this
scheme in which the progressive inclusion of new
higher order terms removes this artifact. Our sec-
ond non-paraxial algorithm has more general ap-
plicability and employs an explicit finite difference
scheme in the longitudinal direction; high accuracy
is also demonstrated. The goal of our investiga-
tions is to tackle the long-standing problem of
understanding the interplay between finite beam
effects and medium non-linearity in the presence of
both transverse and longitudinal linear diffraction.
We study the NNSE as this equation succinctly
describes this interplay and because a series of
analytical results are now available to test nu-
merical solutions. This work provides a reliable
framework for further work in which a variety of
additional terms may be included in the non-par-
axial wave equation, and their relative importance
evaluated. Additional terms could, for example, be
the result of considering cavity geometries [1-11],
light polarisation [17], interfaces [21,22], or effects
such as the induced diffraction that arises from the
inclusion of a non-zero divergence term in the
wave equation [23]. We conclude this paper by
examining the role of a second transverse dimen-
sion in the NNSE for the case when a Gaussian
beam is launched into a self-focusing Kerr me-
dium.

2. Non-paraxial non-linear Schrodinger equation

The scalar field envelope u(¢&, {) of a continuous
wave beam experiencing linear diffraction in one
transverse dimension in a self-focusing Kerr me-
dium evolves according to the NNSE [13]

u ou 1% )
K+l +z ==+ ul'u=0, 1
where { and ¢ (z and x) are the scaled (unscaled)
longitudinal and transverse coordinates respec-
tively, and

2
chiD, é=\£—0x, u(é, ) = kn;oLDA(@C).

2)

wp 1S a transverse scale parameter that can be
considered as equivalent to the waist of a (refer-
ence) Gaussian beam with diffraction length Lp =
kwl/2. k = now/c, ny is the linear refractive index,
ny is the Kerr coefficient, 4(&,() is unscaled field
and x = 1/(kwo)® = (A/wo)’ /4n*nd, where 2 is the
optical wavelength. Eq. (1) quantifies changes in
the transverse profile of a light beam with respect
to a forward propagating reference frame. This
frame is defined such that longitudinal oscillations
of the field that vary as exp(ikz) = exp(i{/2k) are
factored out. It should be stressed that this facto-
risation is not equivalent to constraining the field
to propagate along with any particular frame; the
wave equation is second order in { and the field
envelope u(&, {) may in fact contain contributions
from both forward and backward propagating
components.

In the paraxial approximation, the first term in
Eq. (1) is neglected, whereby the NNSE reduces to
the NSE. The simpler properties of the NSE make
this approximation very attractive, but careful
consideration of the validity of the underlying
assumptions should be undertaken. The most ob-
vious configurations for which the paraxial ap-
proximation cannot be made are those that involve
input beams with significant values of x. In free
space, k = 1073, 107* and 10~ imply around 104,
327 and 1004, respectively, in the full-width of the
reference beam. Ultra-narrow beams can also be
the result of beam evolution that involves strong
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focusing stages, even when the input beam is rea-
sonably paraxial. The signature of non-paraxiality
in either of these cases is a very broad, and full,
angular (spatial) spectrum. Alternatively, a beam
of any width, but which is of sufficiently high in-
tensity, can result in non-linear longitudinal phase
variations that are so rapid that a full non-paraxial
description is required. High intensity and beam
narrowness are, however, often connected in
practice; an example is the inverse relationship
between peak intensity and beam width of spatial
solitons. Finally, non-paraxial effects may also
arise, independently of the above considerations,
when two or more beams simultaneously propa-
gate in significantly different directions. While each
beam may be individually paraxial along its own
propagation direction, the total angular content of
the constituent beams can span a very broad
spectral region.

3. Exact analytical results

A detailed account of the analytical properties
of the NNSE and its soliton solutions was given
in Refs. [13,14]. In this section, we briefly sum-
marise those properties that are particularly rele-
vant for the testing of numerical calculations.
Firstly, comparison of the dispersion relation ob-
tained for Eq. (1) and that of a discrete represen-
tation provides basic checks on the accuracy and
the convergence properties of a numerical method.
Secondly, conservation of the integrated light in-
tensity can be used to test a numerical solution of
the NSE, but this quantity is not conserved when
the field evolves according to the non-paraxial
wave equation. The integrity of solutions can, in
this case, be investigated by checking whether a
different conservation law is satisfied. Finally, ex-
act analytical solutions allow one to test whether
an algorithm yields meaningful results in distinct
configurations of interest.

3.1. Dispersion relations
Through consideration of the plane wave solu-

tion u(¢,() = VIexp [i(k: + k()] of the NNSE,
one obtains the dispersion relation

Kk? + ke +3kZ —1=0. (3)

It is then straightforward to show that the longi-
tudinal wave number k: can be expressed as

1o 1

1
S 4A 4
2K k{’ ( )

where + and — signs give solutions that represent
forward and backward propagating fields, respec-
tively. In the paraxial case, one has k; = —(kZ/
2 —1I), and propagation in only the forward di-
rection. The corresponding dispersion curve is a
parabola that simply translates along the &, axis
when the light intensity / is varied.

Fig. 1 shows plane wave components of non-
paraxial beam propagation in linear (/ = 0) and
non-linear (/ # 0) media, together with a curve
for paraxial propagation. The non-paraxial wave
equation has dispersion curves that are ellipses in
the (k:,k:) plane; solutions that have k? > 27+
1/2k correspond to evanescent waves. As the in-
tensity increases, the size of these ellipses increases
for a focusing Kerr effect, whereas it would de-
crease if the medium were self-defocusing. It can
be seen that a wide angular spectrum (involving

ke
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Fig. 1. Dispersion relation for the NNSE. The curve for linear
propagation (I = 0) passes through the point (k:,k:) = (0,0),
while finite intensity (/ # 0) gives a similar, but larger, ellipse.
The construction of the longitudinal components of a pair of
forward and backward solutions, k; = —(1/2k) £ Ak;, is de-
tailed. The paraxial relation for linear propagation is shown
(dotted) for comparison.
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large |k;| values) gives rise to significant errors in a
paraxial description of linear propagation. A for-
ward axial component (k: = 0) can also be sus-
ceptible to non-paraxial effects if the non-linearity
is strong enough; the paraxial case yields k; = I for
an axial component, while non-paraxiality intro-
duces a leading order correction to this value of
—kI* (when I < 1/4k).

3.2. Energy flow conservation

Any solution u(¢, {) of the paraxial NSE has the
property that

1 - u(, ) dé = C, (5)

o0

where C is a constant. Analysis of the NNSE
shows that a more general quantity replaces this
invariant [14]; in non-paraxial propagation, it is
the energy flow that is conserved. One finds that

/m (;,ﬁwéi’o)w(é,é)lzdé —C, (6)

—00

where C’ is another constant and ¢(&,() is the
beam phase profile in the forward propagating
reference frame, such that u(&, () = |u(&, ()] x
exp [ip(&,()]. When the phase across the whole
beam varies sufficiently slowly in the propagation
direction, the paraxial conservation law is recov-
ered. Beams for which k — 0 also preserve their
integrated intensity, but Eq. (6) highlights the fact
that this is equivalent to assuming that such beams
are infinitely broad and hence have infinite energy
flow.

3.3. Non-paraxial solitons

Exact analytical solutions provide an invaluable
framework for systematically checking distinct
regimes of application of a numerical algorithm.
The absence of any solutions of this kind for non-
paraxial non-linear beam evolution has been a
fundamental limitation in the past. Exact bright
non-paraxial soliton solutions have the form
[13,14]

; [1+2kn?
1 +2xV?

w3 o

u(&,{) = nsech [M] ex

V14 2kV?

¢

where n and V' parametrise soliton amplitude and
transverse velocity, respectively. Note that the for-
ward propagating reference frame, which is im-
plicit in the NNSE and paraxial soliton solutions,
appears explicitly as the phase factor exp(—i{/2k).
Moreover, the precise conditions under which the
paraxial approximation can be made may be de-
duced by examining this solution; the passage
from the NNSE soliton to its NSE counterpart
requires the multiple limit x — 0, x;*> — 0 and
kV? — 0. Individually, these limits specify that a
beam cannot be too narrow, or too intense, or
propagating at any significant angle relative to the
{ axis. The possibility of handling exact off-axis
solitons is particularly interesting. In this regime,
scalar theory of non-linear beam propagation can
remain valid but a full non-paraxial approach is
required; the NNSE also permits the analysis of
several beams that propagate and interact at sig-
nificant angles [12].

4. Numerical analysis

In this section, we present a study of two nu-
merical schemes that are commonly employed in
the modelling of non-linear beam propagation.
Firstly, the truncation error in split-step methods
is quantified and, secondly, the consequences of
adopting a fully finite difference approach are ex-
amined.

4.1. Split-step methods

One of the most widely used schemes in the
numerical integration of parabolic non-linear par-
tial differential equations involves splitting the
evolution operator into separate steps, that often
represent the linear and non-linear operations in-
volved. This can result in a very efficient scheme
when fast Fourier transforms (FFTs) are used to
implement the linear operator in the spectral do-
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main. The dependence of truncation error on the
step size A{, due to non-commutativity of linear
and non-linear operators of the NSE, can be
O(AL) if each non-linear step is embedded be-
tween two linear half-steps. The Feit-Fleck non-
paraxial beam propagation method [18] is based
on such a scheme. Their algorithm was developed
to investigate the self-focusing of 2D (transverse)
beams in Kerr media. They predicted that non-
paraxial effects can offset the unphysical collapse
of a beam to zero transverse size that is predicted
by paraxial theory. It is interesting to note that
these authors state that the assumptions made in
the derivation of their algorithm are not valid in
the vicinity of precisely such focusing points.

We now show why conventional operator split-
ting strategies fail to describe accurately any
sustained presence of non-paraxial effects in non-
linear beam propagation, such as in the context of
non-paraxial solitons. This failure is particularly
striking in view of the fact that operator splitting
can be done in such a way that the linear and non-
linear operators individually give exact non-par-
axial descriptions of diffraction and self-phase
modulation (SPM), respectively. For the sake of
brevity, the notation Op = (1/2)0%/0¢* and Oy =
lu(&,)|* will be used for the linear and non-linear
operators of the NSE. The NNSE can then be
written as
0 1 1
—u

ZK 2}6 1 + 4K(OL + ON) u(i, C),

(8)

where 4+ and — signs correspond to solving the
equation in the forward and backward ( direc-
tions, respectively. The solution may be advanced
by a forward step of length A{ through

(&, + AL) ~ exp {%ﬁ( (1 — T+ 4x(0; + ON))]
x u(&, (). 9)

This step is approximate because of a trapezoidal
representation of the exponentiated integral, but
otherwise the operators Op and Oy appear in an
essentially exact way. It is in this sense that the
above expression can be considered as ‘“‘exact”.
In the Feit-Fleck algorithm, the approximation

(1 +4K0N)l/2 ~ 1 is employed to obtain a non-
paraxial linear operator. The operators involved
can also be expressed in an approximate (sym-
metrised) form,

&0 A0 = exp| 5 (1 - VIH AL

4k

X exp [—;SC (1 — M)]
X exp [_iAC (1 —+/1 +4K0L)]

4
x u(&,0), (10)

which corresponds to a non-linear step, of size A,
sandwiched between two linear half-steps. In this
representation, the exact diffraction and SPM
operators for purely linear and purely non-linear
non-paraxial propagation steps, respectively, are
used. If normalisations (2) are used directly in the
Feit-Fleck algorithm [18], as derived from the
non-linear Helmholtz equation, one obtains

u(&, L+ AL) =~ exp [%ﬁg (1- V1 +—4K0L)}

x exp [1ALON]
X exp [;—KM (1 — M)]
xu(¢,0), (11)

from which Eq. (10) is recovered when the term of
the non-linear Helmholtz equation that involves 3
is neglected.

The accuracy of the symmetrised scheme can be
ascertained by making a comparison of Egs. (9)
and (10). A power series expansion of Eq. (10)
yields

(&, {+ AL = {1 +iAL(OL + Ox) — k(0f + })
+ ]+ AP [0 + 0% + OLOx
(12)

where at each power of the step size, there is an
infinite series of terms arising from successive
powers of k. The truncation error involved can be
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quantified if Eq. (9) is also expanded in a power
series. This gives

u(&,C+ AL = {1 +iAL[(OL + On) — k(O + Ox)*
]+ AZ[-LOL + On)?
+ k(0L + ON)3 44 Su(E0).

(13)

The error is found by simply examining the dif-
ference of Egs. (12) and (13). For example, the
O(AQ) error terms are

E, = iA{[-K(OLOx + OnOL) + 2% (07 O
+ OLONOL + OLO%;, + O3 01
+ ONOLON + 0N02L) + - Ju(E ). (14)

Thus, while a symmetrised split-step algorithm for
the paraxial NSE vyields a truncation error of
O(AL®), the corresponding scheme for non-parax-
ial propagation leads to a much larger error of
O(AQ).

4.2. Finite difference methods

In contrast to the above split-step scheme, a
finite difference approach involves solving both the
linear and non-linear parts of the NNSE simulta-
neously. This is made possible by approximating
each differential operator with an appropriate fi-
nite difference formula. The truncation error that
results depends on the transversal grid resolution
A¢ and can, in principle, be made as small as de-
sired. Use of a popular three-point approximation
for the second order transverse derivative gives the
result

0*u(&, ) _u(@HALD - 2u(E ) +u(C - ALD
Gl A&

1 2@4u(§,5)
T (15)

The first term on the right-hand side of Eq. (15) is
the finite difference approximation of the deriva-
tive and the second term can be used to estimate
the error in this approximation. The leading order
error term is proportional to Aé*, which suggests
that a moderate number of transverse data points

could make this error relatively small. However,
the non-paraxial soliton solution has [0*u(¢,()/
654\ proportional to ¥* and the actual number of
data points, required for a reasonable level of
accuracy, rapidly becomes prohibitive as V' is
increased. If a higher order finite difference ap-
proximation is used, instead of a three-point for-
mula, the error term will involve, not only a higher
power of A but also, a higher order partial de-
rivative. This implies an even higher power of V
and, again, an extremely high number of trans-
verse data points for accurate calculations. A
similar argument can be presented for any non-
paraxial beam that involves a wide angular range
of spectral components.

5. New numerical algorithms
5.1. Modified split-step method

The magnitude of the error in the symmetrised
split-step solution of the NNSE depends on both
the computational and the physical parameters
considered. We now show that one can often
identify the most significant error terms and in-
troduce appropriate corrections to the numerical
scheme to eliminate them. To demonstrate this
approach, we focus on the generation and the
evolution of non-paraxial bright soliton solutions
when non-paraxial effects arise fundamentally
from the angle 6 between the light beam and the (
axis.

For this configuration, we consider n ~ 1, k < 1
and allow tan?0 = 2x)V? to take arbitrarily large
values. Substitution of the soliton solution into the
equation for E; reveals that the most significant
error terms arise from the fact that (Op)"u(¢, () is
proportional to (¥2)". At each power m of k, a
number of operators of the form OxO}' can be
identified. The error introduced by these operators
has a magnitude of the order A{(xV?)" which
generally cannot be neglected. One can also show
that any remaining terms in the error expression
are much smaller than this, for any value of m.

A modified version of the split-step approach
can be proposed that deals with the large trunca-
tion errors that arise from off-axis non-paraxiality.
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We choose a specific objective of finding a modi-
fied non-linear operator that leads to a negligible
first order error term. Since we are concerned with
solutions that have n ~ 1, the exact operator for a
purely non-linear step can be approximated using

i (1 _ M) ~ iOy. (16)

2K
Hence, the equation describing non-paraxial SPM,

*u . Ou

—+1—-+0nu=0 17
o e T 1)
is given to a first approximation by the corre-
sponding paraxial equation:

Ou

i— + Onu = 0. 18
16C+ NU ( )
The linear operator Oy is now introduced into this
approximation by proposing a new generalised
form of the non-linear operator,

where f(Oy;x) is, at this stage, an undetermined
function of the operator Op and the non-paraxial
parameter k. The precise form of this function is
obtained by stipulating that significant O(A{) error
terms are cancelled up to a given order of ,
whereby one finds that

f(OvL; k) = =2K0L + 6K°0F — 2017 0]
+70k* 0} — 252i°0F + 924K°0] + - --
(20)

The accuracy of the resulting modified split-step
method can be verified by comparison of numeri-
cal and analytical solutions. Fig. 2 shows numeri-
cal results for an initial condition that corresponds
to a non-paraxial soliton with x =0.001 and
V'=10. A curve of peak amplitude |u|, versus
propagation distance should be a straight hori-
zontal line for this boundary condition. The nu-
merical solution given by the Feit-Fleck method is
found to exhibit large oscillations as the beam
propagates. Three curves are also shown for
the modified split-step method where an increas-
ing number of correction terms are included in
f(Or; k); the first curve takes only the first term in

@)

T

1oof Quierg —— |
Qrder 2 ==+
Order 3

(b)
. 0.00012 : .

I(O)rger (1) —_—

rder 1 ------

0.0001 - Order 2 -~ 1
rder 3 -

8e-05 1
6e-05 b
4e-05 E

2e-05 b

[o) Tt el

(Ef10w(0) = Efiow(€)) / E10w(0

-2e-05 . L !
0 5 10 15 20

Fig. 2. Evolution of (a) the peak beam amplitude |u|,, and (b)
the energy flow Ep,, for an exact non-paraxial soliton initial
condition with # = 1, ¥ = 10 and x = 0.001. The curve labelled
“order 0~ was calculated using the Feit-Fleck method, while
curves labelled “orders 1, 2 and 3” were generated using the
modified split-step method with one, two and three correction
terms, respectively.

Eq. (20) into account, while the other two curves
include terms in x> and 3. Excellent convergence
to the desired solution is found as higher orders of
Kk are included in the modified non-linear operator.
In particular, with only three correction terms, the
numerical solution always has |u|,, within 0.5% of
its exact value of unity. Furthermore, calculation
of the energy flow implied by each set of data
shows convergence to a constant value as the
number of correction terms is increased.

5.2. Difference-differential equation method

The modified split-step approach has clear ad-
vantages over conventional non-paraxial beam
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propagation methods in terms of both accuracy,
when compared with the Feit-Fleck method, and
efficiency, when compared with fully finite differ-
ence schemes. However, the choice of which error
terms to eliminate varies when the specific char-
acter of the non-paraxiality is changed. The ap-
proach thus suffers from the limitation that no one
formulation can accurately model all possible
configurations. We note that a similar conclusion
may also be drawn concerning more general model
equations for non-paraxial beam evolution whose
derivation relies on an order-of-magnitude anal-
ysis [17]. We have thus derived an additional
algorithm that has wider applicability. In this al-
ternative method, we employ finite difference for-
mulae to approximate derivatives with respect to
the { coordinate but, in view of the difficulties re-
sulting from a finite difference representation of
the transverse derivative, the diffraction operator
is implemented in the spectral domain. The finite
difference formulae we have used for the second
and first order { derivatives are

[M] _ 1 (8) = 2u,(8) + w1 (€)
{=nAL

ol AZ?
+ O(AL) (21)
and
[au(f, C)} _ un+1(f) - unfl(é)
o Jn 2AL
+ O(AD), (22)

where u,(&) = u(&,nAl). Substitution of these
formulae in the NNSE yields the difference-differ-
ential equation

G p— ) ch —~ Agza_z

(2K +1AL o8

- 2A§2|un(5)|2> (&)
— (2K - iAé’)unfl (é):l :

This equation defines an explicit algorithm in
which the effect of the transverse differential op-
erator 62/652 can be computed efficiently using

FFTs. The accuracy and convergence properties of
this method are analysed by deriving a numerical
dispersion relation. Considering plane wave com-
ponents at discrete values of (,

un(8) = VT exp [i(nk; AL + k:2)] (23)

yields the numerical dispersion relation

14 2
ky(kv)—iicosfl =t (5) Gk -1)
c\"¢/) —

M 1+ (3
1 1 (AL
—A—Ctan (ﬂ) (24)

A comparison with the dispersion relation of
the partial differential equation, Eq. (4), reveals
the same functional dependence with respect to
transverse wave number and intensity of the form
kg /2 — 1. The appearance of this form expresses
the trade-off between on- and off-axis components
of the total wave vector and that a non-linear
contribution is made to this latter quantity by the
Kerr effect. The numerical dispersion relation is
plotted in Fig. 3 for a range of longitudinal step
sizes. A curve for the exact dispersion relation is
also plotted and a fast convergence of the nu-
merical method is demonstrated as A{/k — 0. The
requirement that the argument of the cos™' term in
Eq. (24) be less than unity yields the correct
physical upper limit on the magnitude of the
transverse wave number, through

40 T T T T T

Nz
30 AC/gfc/’: o5

A/ =01

O¥X+

20F

10

ke
o

-10+
20k

230 4

-40

—IOIOO 78I00 76I00 ke —4IOO —2l00 0
Fig. 3. Numerical dispersion relation for the difference-differ-
ential equation method when / = 0. A rapid convergence to the
corresponding exact (NNSE) curve is demonstrated as the step
size A is reduced (A{/x — 0).
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. ) 1
Ag}go (k*:)m'dx =20+ 2K’ (25)
and also that convergence of the numerical dis-
persion relation requires A{ < k. In terms of un-
scaled variables, this latter condition corresponds
to Az < 4, which is an expected result for non-
paraxial propagation.

The difference-differential algorithm has the
advantage of being explicit, which permits a simple
implementation and low computation load in the
solution of the NNSE. In common with solving
second order differential equations analytically, the
numerical method requires two boundary condi-
tions to define a particular solution. The transverse
field envelope may, for example, be specified at
{ =0 and at { = A{. If the initial stages of beam
evolution are sufficiently paraxial, u(&, A{) can be
calculated using the Feit-Fleck method. Other-
wise, the modified split-step method can be used to
find the field at { = A{. An alternative set of
boundary conditions would be the field profile and
its longitudinal derivative at { = 0.

The dispersion curves shown in Fig. 3 corre-
spond to cases where the longitudinal wave num-
ber k; is real. It may seem that circumstances when
k; becomes complex are not of any interest, since
this implies attenuation of a field. A key point to
note is that one solves the NNSE in only one
longitudinal direction and that the resulting solu-
tion can contain contributions from both forward-
and backward-travelling waves. A backward field
that is decaying exponentially can appear in the
solution as the exponential growth of a small seed
in the forward direction. This potential problem
can be overcome by filtering out both forward and
backward evanescent components in the numerical
solution. This is achieved by removing any con-
tributions to the solution that have spectral com-
ponents with

, di AL\
1¢<>A—C2 1+(§> —1]. (26)

Since evanescent components should rapidly die
out during beam evolution, one expects that their
removal from the numerical solution will not result
in any undesirable effects. We have checked that

' Difference-differential équation —_—
1.02 Feit & Fleck’s method ------ b
1r
£ 0.98F g
= \ o
096F N _
094F N T
0.92 L L L
0 5 10 15 20
¢

Fig. 4. Evolution of the peak value of |u(¢, ()|, for exact non-
paraxial soliton (x = 0.001, ' = 10) initial conditions, obtained
from the difference-differential equation method (—) and Feit—
Fleck method (---).

such filtering can indeed be performed without
affecting conservation of the energy flow or the
integrity of an exact solution, even when large k?
values are involved. )

Our first demonstration of the difference-dif-
ferential equation method concerns the propaga-
tion of an exact non-paraxial soliton solution (7).
Fig. 4 shows the evolution of the peak value of
|u(&, Q)| for initial conditions corresponding to a
non-paraxial soliton with x = 0.001 and 7 = 10.
Whereas the results calculated by means of the
difference-differential equation (solid line) show
the expected constant value for an exact solution,
those obtained from Feit-Fleck method (dashed
line) display oscillations. Such oscillations lead to
the formation of a bright soliton which is the as-
ymptotic exact solution of the model described by
the split-step equations and this solution differs
from that derived from the NNSE. A detailed
study of the re-shaping of beams towards non-
paraxial solitons was presented in Ref. [14].

For a second application of the difference-
differential equation method, the role of an ad-
ditional transverse derivative in the NNSE is
investigated. Eq. (1) then takes the form

u ou 1[/%%u u )
K—+i+tz(—5+—5 )+ uu=0, 27
and no exact analytical non-linear beam solutions

are known. To allow a comparison with previous
work, we choose the same parameters as those
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used in Fig. 1 of Ref. [17]. Their units are similar to
ours, except that the width of their reference
Gaussian beam is w = wy/2; this makes our pa-
rameter k equivalent to their ¢3/2. We con-
sider an input beam with Gaussian cross-section
and planar transverse phase profile, u(&,,0) =
upexp[—(& +¢*)], with wuy=1.4575 and =
2.43 x 1073 [17]. A transverse grid with 256 x 256
points and a step size of Al = 10~ proves to be
sufficient for an accurate calculation of the solu-
tion.

Fig. 5(a) shows the evolution of normalised
peak intensity [u(0, ¢)|*/|u(0,0)|* with respect to {,
as predicted by paraxial theory, by the Feit-Fleck
method, and by the difference-differential equation
method. It is well known that the paraxial ap-

(a)

100 T L T T "

; Paraxial ----
P Feit & Fleck's method ----
i Difference-differential equation —

lu(0, O / [u(0, 0)]?

proximation leads to an unphysical collapse of the
solution to zero transverse size. The other two
methods predict the elimination of this uncon-
trolled focusing, but it is clear that they also give
quantitatively different results. The results ob-
tained by means of the Feit—Fleck method display
a staircase-like behaviour of the paraxial invariant
with sudden drops near the focusing points [18]
and almost constant values elsewhere. There are
also relatively large changes in the calculated non-
paraxial invariant in the vicinity of the same
points, as shown in Fig. 5(b). In part (c) of Fig. 5,
the conserved quantities of paraxial and non-par-
axial propagation are plotted using the data from
the difference-differential equation method. It is
found that the energy flow is conserved to within

T -
Non-paraxial —
Paraxial ----- 4

Arbitrary units

6.75
6.7F

T .
Non-paraxial —
Paraxial ----- E

6.65 [
6.6
6.55
6.5

Arbitrary units

6.45 -
6.4

6A350 1

¢

Fig. 5. 2D (transverse) self-focusing arising from Gaussian beam input with peak amplitude uy = 1.4575 and x = 2.43 x 1073, (a)
Curves of normalised peak intensity, as predicted by paraxial theory (- --), the Feit-Fleck method (---) and the difference-differential
equation method (—). Comparison of the paraxial and non-paraxial propagation invariants according to the results obtained with the
Feit-Fleck method (b) and the difference-differential equation method (c).
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one part in 10°, while the paraxial invariant shows
relatively large deviations in regions where the
beam focuses down to a small spot. This proves
that the results obtained by means of the differ-
ence-differential equation are consistent with the
analytical properties of the NNSE.

5.3. Performance evaluation

In order to evaluate the performance of the
proposed numerical schemes, we present results of
the required CPU time per propagation step for
each of the methods described in Sections 4.1 and
4.2, along with results for the Feit-Fleck algo-
rithm. The data reported in this section has been
obtained using a PC compatible desktop computer
equipped with an AMD K6 processor running at
350 MHz and 64 MB of RAM memory. We have
used Octave under Linux for the computations.
Fig. 6 shows the CPU time for one propagation
step of the (1 4+ 1)D problem as a function of the
number of grid points N in the transverse dimen-
sion. While the CPU time required by the differ-
ence-differential equation method is close to that
of the Feit-Fleck algorithm, the corresponding
time for one iteration of the modified split-step
method is approximately twice that value.

These results can be explained in terms of the
number of important operations involved, i.e. how
many FFTs, complex multiplications and complex
exponentials are needed for each step. The basic
structure of the calculations for both the Feit-

90 T T T T

80 Feit & Fleck's method —— A
Modified split-step method --x-- Vs
70 Difference-differential equation --x-- A
60 S
3
£

10 11

8 9
logy(N)

Fig. 6. CPU time (in milliseconds) for one step of the Feit—
Fleck, the modified split step and the difference-differential
equation methods using a desktop computer.

Fleck and the modified split-step methods is the
symmetrised form of Eq. (11) where Eq. (19) has
been used for the non-linear step in the modified
split-step method. The computations of the linear
operators involve four FFTs and, for the modified
non-linear step, a predictor—corrector scheme has
also been implemented that requires and addi-
tional four FFTs. Thus, the modified split-step
method requires twice the number of FFTs of the
Feit-Fleck algorithm and this factor dictates the
overall CPU time. The full propagation step in
the difference-differential equation method re-
quires two FFTs and another two are used to filter
out evanescent components of the field at each
propagation step, resulting in the same number of
FFTs as the Feit-Fleck scheme; while no com-
plex exponentials are evaluated, a larger number
of complex multiplications than the Feit-Fleck
method are involved. A key point to recall is that
the CPU time per step can be reduced in both the
Feit-Fleck method and the modified split step
when output data is not required after each step.
In that case, each second linear half-step can be
combined with the first linear half-step of the next
stage resulting in a reduction of two FFTs and N
complex multiplications per step.

6. Conclusions

Exact analytical results have been employed in
the development and testing of two novel non-
paraxial beam propagation methods. A modified
split-step method and a difference-differential equa-
tion method were described and analysed, and
their predictions have been rigorously verified. Our
goal has been to demonstrate, for the first time,
how to model accurately the interplay between
Kerr self-focusing and both longitudinal and trans-
verse linear diffraction of beams; this has been a
long-standing problem.

The scalar framework adopted permitted test-
ing of numerical data using recent analytical re-
sults. This framework is valid in some situations,
such as when non-paraxiality arises from the ob-
lique propagation or interaction of beams, but may
be incomplete during axial self-focusing when vec-
torial effects also come into play. Most importantly,
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this work provides the foundations upon which
further investigations may be based; the modelling
of numerous higher order effects and different
physical geometries can now be undertaken with
much greater confidence. We believe that the dif-
ference-differential approach will prove to be
flexible in the accommodation of additional effects,
such as those listed at the end of Section 1.
However, a thorough account of the properties of
the generalised difference-differential equation(s)
that arise when particular higher order effects are
included is outwith the scope of this paper.
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