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INTRODUCTION 
 

Spatial optical solitons play a fundamental role in the dynamics of nonlinear beams [1] 
and an accurate description of aspects such as oblique propagation and mutual interactions is 
essential. Solitons that propagate at modest or large angles relative to the reference 
longitudinal direction, or to each other, experience a type of non-paraxiality that can be 
accurately described by a nonlinear Helmholtz equation (NHE). Considering a single soliton 
beam that coincides with the longitudinal axis ζ , off-axis propagation results if only the axis 
is rotated, whereby ζζ∂  is no longer negligible. Moreover, the resulting NHE can describe the 
total electric field of both forward and backward propagating components, and thus soliton 
interactions at arbitrary angles. 

Some optical contexts, such as intense self-focusing, give rise to a more general type 
of nonparaxiality [2-4]. Paraxiality is commonly defined through a small parameter 

22
0 4/ DLw=κ , where 0w  is beam width, 2/2

0kwLD =  and cnk /0ω= . Order of magnitude 
analysis [2,3], based on κ , then yields leading correction terms to a paraxial wave equation. 
A near-paraxial beam, well-described by scalar electric field and refractive index 
distributions, if considered in a reference frame rotated by θ , acquires an effective transverse 
velocity V , but the beam itself remains intrinsically scalar in character. The usual paraxial 
condition, 0≈κ , is still preserved but now θκ 22 tan2 =V  can assume arbitrarily large 
values. The presence of this type of, potentially dominant, non-paraxial correction is 
demonstrated through exact solution of the NHE. Helmholtz-type nonparaxiality, alone, is 
thus shown to result in non-trivial modifications to soliton propagation characteristics. 
 

HELMHOLTZ BRIGHT SOLITONS 
 

The equivalence of the nonparaxial nonlinear Schrödinger equation (NNLS) and the 
appropriate NHE has recently been noted [5]. This permits identification of nonparaxial 
generalizations of conventional soliton theory as exact analytical Helmholtz bright soliton 
solutions [6]. Physical interpretations [6] and analytical properties [7] of Helmholtz bright 
solitons have been presented and allowed the development and testing of new nonparaxial 
beam propagation techniques [8]. To highlight the modifications to paraxial theory, here we 
solve the equivalent focusing NNLS [5-8]: 
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where DLz /=ζ , 0/2 wx=ξ  and ( ) ( ) ( )ζξζξ ,/, 2/1
02 BnLnku D=  are longitudinal and 

transverse coordinates and field amplitude, respectively, in terms of the Kerr coefficient n2, 
unscaled variables z, x and the field envelope B defined by )exp(),(),( ikzzxBzxE = . We find 
the following general Helmholtz bright soliton: 
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where η , V and κ  are the amplitude, transverse velocity and nonparaxial parameters, respec-
tively. When nonparaxial effects are negligible, i.e. when 0→κ , 02 →κη  and 02 →Vκ , 
one recovers the well-known paraxial soliton solution of the nonlinear Schrödinger equation 
(NLS): 
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The width of the Helmholtz bright soliton is given by ( ) ηκξ /21 212
0 V+= . The soli-

ton’s area is thus proportional to ( ) 212
0 21 Vκηξ +=  and depends on both the transverse veloc-

ity and the actual size of the beam (through κ ). The latter property reflects the fact that the 
solutions of the NNLS are invariant under transformations: 
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from which the well-known Galilean transformation invariance of the NLS is recovered in the 
appropriate paraxial limit. The transformations (4)-(5) correspond to a rotation of the solution 
in the original (unscaled) coordinate system by an angle θ , given by ( ) 21221sec Vκθ += ; this 
allows the analysis to be extended to common nonparaxial situations in which off-axis soliton 
beams are considered. We now demonstrate that these transformations can be used to predict 
the long-term evolution of Helmholtz bright soliton when they are used in conjunction with 
analytical paraxial techniques. 

Numerical studies are needed to address important questions regarding the stability of 
nonlinear solutions and whether they can be generated from arbitrary initial conditions. Our 
exact Helmholtz solutions, and properties of the NHE, have provided a framework for testing 
existing nonparaxial beam propagation methods. Indeed, distinct methods were found to yield 
quantitatively different results  and we found it necessary to derive new algorithms [8]. Here, 
we consider Helmholtz bright soliton formation from the initial condition 

( ) =0,ξu sech ( ) ( )ξξ 0exp iS− , which corresponds to an exact paraxial soliton with 1=η  and 

0SV = . Figure 1 shows the evolution of the beam area for 310−=κ and three different values 
of 0S  (giving propagation angles of °°= 6.26,9.12θ and °1.42 ). The initial value problems 
can be shown to be equivalent to those involving perturbed paraxial solitons with 0=V  (their 
widths having been reduced by factors of ( ) 21221 Vκ+ ). Thus, the long term evolution of the 
soliton beams can be predicted using inverse scattering techniques. Horizontal lines display 
the long term evolution values predicted from such analysis. It can be seen that the beam pa-
rameters undergo decaying oscillations towards their predicted asymptotic values. 



 
Fig. 1 - Formation of Helmholtz bright solitons from paraxial soliton initial conditions. The evolution of the 
beam area is plotted for profiles launched at three distinct input angles. 

 
These simulations demonstrate the inappropriateness of paraxial soliton solutions in 

oblique beam propagation and that the Helmholtz solutions are both stable and act as attrac-
tors in nonlinear beam evolution. 
 

HELMHOLTZ DARK SOLITONS 
 

Now, we present the general Helmholtz dark soliton solution for a defocusing Kerr 
nonlinearity. Again, to highlight the modifications to paraxial theory, we solve the equivalent 
defocusing NNLS: 
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For simplicity, a uniform background field 0u  is assumed. A general dark solution of 
Eq. (6) is then found to be [9] 

( ) ( ) 





−




















 +−









+
−

+Θ=
κ

ζ
κ

ζξ
κ
κζξ

2
exp

221
41exptanh,

2
1

2

2
0

0 iV
V
uiiFAuu ,           (7) 

where 
( )

( ) 2
12

0

21 W

WAu

κ

ζξ

+

+
=Θ                                                           (8) 

and 

0

0

21 VV
VV

W
κ+
−

=                                                            (9) 

is a net transverse velocity involving  V (from choice of reference direction) and  0V  (a grey 
soliton component), given by 
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F and A are real constants, with ( ) 2/121 AF −±= . 0=F  corresponds to Helmholtz black 
solitons, while 0>F yields grey solitons. In the paraxial limit, the NLS dark soliton is 
obtained: 
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where 
( )[ ]ζξ 00 FuVAu −+=Θ .                                            (12) 

Non-zero W corresponds to off-axis propagation. Geometrical considerations then 
imply that the beam width projected onto the transverse axis should increase (a feature absent 
from paraxial theory). In fact, the inverse dark soliton width is given by:  
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The beam width enlargement factor can also be written as ( ) ( )0
2/12 sec21 θθκ −=+ W , where 
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0 21sec Vκθ  is the angle associated with 0V  and ( ) 



 += − 2

121 21sec Vκθ  is 

defined by choice of reference frame.  
 To explore whether Helmholtz dark solitons are spontaneously created from an initial 
field profile that does not correspond to an exact soliton, we consider the initial condition 

( ) ( )ξξξ 000 exptanh)0,( iSuuu −= . In a paraxial framework, a single black soliton results with 

transverse velocity 0S . For 12
0 <<uκ , the NHE evolution can be shown to be equivalent to 

the propagation of an initially perturbed (reduced width) on-axis NLS black soliton. Paraxial 
techniques then verify that one expects the generation of only one Helmholtz soliton. Figure 2 
shows the evolving beam widths for u0=1, κ=10-3 and three different values of S0 correspond-
ing to propagation angles of ( )== − Vκθ 2tan 1 12.9º, 26.6º and 42.1º, respectively.  
 
 

 
Fig. 2 - Evolution of beam widths for initially perturbed off-axis Helmholtz black solitons (horizontal lines de-
note analytical predictions for their asymptotic values). 

 



The predicted asymptotic values of the Helmholtz beam width are given by 
( ) 2/1221 Vκ+  where ( ) 2/12

00 21/ SSV κ−= when 12
0 <<uκ . While similarly perturbed Helm-

holtz bright solitons undergo large oscillations over long propagation distances, dark beams 
are found to exhibit a surprisingly fast convergence to the asymptotic solutions. 

 
COHERENT HELMOLTZ SOLITON COLLISIONS 

 
The interactions of optical spatial solitons in various types of media have been exten-

sively studied both theoretically and experimentally. Three fundamental interaction geome-
tries can be identified: almost exactly copropagating solitons, almost exactly counterpropagat-
ing solitons and collisions at intermediate angles. At small interaction angles (close to exact 
copropagation), the spatial problem is fully analogous to the interaction of temporal solitons 
in optical fibres. This thus corresponds to a paraxial geometry where accurate analytical and 
numerical results can be derived from the NLS [10,11]. The other extreme, of near exact 
counterpropagation of beams, has also been studied using the paraxial approximation [12,13]. 
Models consisting of coupled equations for the forward and backward beams have been em-
ployed, rendering calculation of the numerical solution more involved. However, modeling 
the interaction of spatial solitons at any angle ranging between these two extremes requires 
accounting for Helmholtz-type nonparaxiality. Various contexts and proposed photonic de-
vices [14-16] involve multiplexed solitons at such intermediate angles where, for example, 
interaction trajectory phase shifts need to be accurately described. Paraxial theory can also be 
shown to be inconsistent, as it fails to uniquely define soliton propagation angles in the labo-
ratory frame. To date, intermediate angle configurations have only been analysed using NLS 
theory. In this section, we present the first detailed account of the interaction properties of co-
herent Helmholtz bright solitons in a nonlinear Kerr medium. A physically consistent picture 
emerges that yields results that differ substantially from predictions derived from the paraxial 
NLS. 

The NHE can accurately capture the behaviour of multiple soliton beams that simulta-
neously propagate at arbitrary angles (including counterpropagation geometries). Here, we 
consider two such beams, ),(1 ζξu  and ),(2 ζξu , propagating at angles θ  and –θ  to the z-
axis, respectively, and set ),(),(),( 21 ζξζξζξ uuu +=  in (1). The simultaneous presence of 
the beams modulates the refractive index of the Kerr medium according to 
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2 |||||| uuuuuuu +++= . The last two terms define a (real) holographic grating [17] 
that is superimposed on variations due to the individual intensities of the solitons. Three dis-
tinct effects then arise from the nonlinearity uu 2|| : a term proportional to the jth beam ampli-
tude ju and its intensity 2|| ju , accounting for self-phase modulation, a term of the form 

jj uu 2
3 ||2 − , corresponding to cross-phase modulation (XPM) of the interacting beams, and 

phase-sensitive terms proportional to *
3

2
jj uu − .  The index grating is absent from interactions of 

incoherent solitons, whereby there are no holographic terms and the XPM term is reduced to 
jj uu 2

3 || − . To describe the full range of coherence, one introduces a grating factor h and ex-

presses the total XPM contribution as jj uuh 2
3 ||)1( −+ , which has limits: 0=h  for incoherent 

interactions, and 1=h  for coherent interactions. 
For small interaction angles, the phase-sensitive terms contribute notably to the collision 

process, and result in phenomena that are strongly dependent on relative soliton phase. The 
terms are important when they generate field components with wavevectors that are resonant 
with the interacting beams. As the interaction angle increases, the phase-sensitive terms be-



come non-resonant and can be neglected in the analysis. Within a full NHE description, or 
that given by the NLS, their effect is to produce new spectral components in the interaction 
region that are reabsorbed by the propagating solitons after their collision [18]. NHE-
governed evolution of two interacting beams then reduces to two-coupled equations: 
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whereby collision effects can be understood in terms of respective beam intensities. An im-
portant parameter in the collision process is the trajectory phase shift of the solitons. We de-
note this as ∆ and define its meaning in Figure 3. It is important to note that, in a paraxial de-
scription, ∆ goes monotonically to zero as the interaction angle increases [18].  

 

 
Fig. 3 - Geometry of Helmholtz soliton collisions in which interactions are dominated by the individual beam 
intensities. Top panel: copropagating solitons; bottom panel: counterpropagating solitons. 

 
Figure 3 shows the geometry of Helmholtz soliton collisions in the absence of phase-

sensitive terms in the evolution equations; a clear symmetry arises in the problem when the 
interaction is dominated by the intensities of the beams. In the configurations of copropagat-
ing solitons shown in the top panel, the two input beams propagate at angles of θ  and –θ  to 
the z axis, respectively. For large interaction angles, the collision geometry has similar sym-
metry to that of small propagation angles, except that ∆ has to change sign as θ  crosses the 
value of 45o (it is precisely zero at this angle). Each configuration of copropagating interac-
tion can be rotated by 90o to give a corresponding description of counterpropagating interac-
tion (shown in the bottom panel). For example, the case shown leftmost in the bottom panel 
corresponds to the configuration of the rightmost plot in the top panel. Identification of such 
symmetry permits an alternative approach to the numerical simulation of large angle interac-
tions, where numerical problems can otherwise arise. Since the NHE solution can support 
both forward and backward components, a boundary condition for numerical integration may 
contain an input soliton (propagating in the forward direction) along with an output soliton 
(that has resulted from propagation in the backward direction). Thus, if a collision involves 
negligible radiation (which is generally true, other than for cases of near exact counterpropa-
gation [13]), one can obtain a valid counterpropagating solution by rotating the copropagating 
solution by 90 degrees. 



 

 
Fig. 4 – Intensity profiles of two interacting solitons with equal amplitudes. Left panel: two co-propagating soli-
tons; right panel: two counterpropagating solitons. 

 
In figure 4, we map the total field intensity for two interacting Helmholtz solitons in 

copropagation and counterpropagation configurations; the index grating induced in the me-
dium occurs in the transverse and longitudinal directions, respectively. In both cases 

310−=κ , while 10=V  in the copropagation case (left panel) and 50=V  in the counter-
propagation case (right panel). Both configurations correspond to approximately the same an-
gle (θ=24.095o and 90o-θ=24.095o, respectively). 

 
 

 
Fig. 5 - Magnitude of the trajectory phase shift, as defined in Fig. 3, as a function of interaction angle θ  for both 
copropagation and counterpropagation configurations (κ=10-3). 

 
Figure 5 shows the magnitude of the trajectory phase shift, as a function of θ, for both 

copropagation and counterpropagation initial conditions. The value of ∆ is obtained by fitting 
the numerical data to a pair of hyperbolic secant functions, before and after each collision, to 
estimate soliton positions as a function of ζ.  The trajectory phase shift is then derived from 
the soliton shift in the ξ direction, ∆ξ,, using ∆=∆ξcosθ, where 221/1cos Vκθ += . 
 



CONCLUSIONS 
 

In this paper, we have presented exact analytical Helmholtz bright and dark soliton solu-
tions for a Kerr nonlinearity. Simulations verify that these solutions are both robust and act as 
attractors in nonlinear beam dynamics. Results dealing with the coherent interaction of Helm-
holtz bright solitons have also been presented, for the first time. These considerations extend 
previous (paraxial) studies that are only valid for vanishingly small interaction angles.  
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