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The theory of spatial Kerr solitons is extended to colliding beams that are neither almost-exactly copropa-
gating nor almost-exactly counterpropagating. Our new Helmholtz formalism yields results that are consistent
with the inherent symmetry of the collision process and that are not predicted by existing paraxial descriptions.
Full numerical and approximate analytical results are presented. These show excellent agreement. In particular,
Kerr solitons are found to be remarkably robust under nonparaxial collisions.
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Solitons are universal entities in nonlinear science and
their interactions are a key defining property. Understanding
soliton collisions is both of fundamental interest and of im-
portance to a wealth of phenomena and proposed applica-
tions. In particular, spatial Kerr solitons have attracted exten-
sive experimental and theoretical study in photonics, where
multiplexed optical fields may lie at the heart of future tech-
nologies �1�. Three distinct angular regimes can be identified
for spatial soliton collisions, corresponding to when interact-
ing beams are �i� almost exactly copropagating, �ii� almost
exactly counterpropagating, and �iii� at some intermediate
angle. The nonlinear Schrödinger �NLS� equation has been
the basic model for describing the first regime �2,3�, and a
recent work �4� has considered regime �ii�. However, the
inherent spatial-symmetry-breaking assumption of paraxial-
ity means that these existing frameworks can only accurately
describe beams aligned at vanishingly small angles with
respect to a reference direction.

In this paper, we extend the theoretical description of spa-
tial Kerr soliton collisions to include arbitrary angles and
demonstrate excellent agreement between full numerical and
analytical predictions. We generally consider angles in un-
scaled coordinates �i.e., the physical/laboratory angles of the
beams�. It may be thought that numerous previous works
have studied Kerr soliton collisions at low or moderate
angles, but this would be a misinterpretation arising from
results that are presented in scaled coordinates. For example,
Ref. �4� shows beams interacting at an angle of 26.5° �in
scaled units�. However, the authors of this paper also cor-
rectly state that their paraxial model constrains the collision
angle in dimensional units to be very small and that beams
actually propagate at tiny angles �0���1� with respect to a
reference axis.

The nonparaxial nonlinear Schrödinger equation

�
�2u

��2 + i
�u

��
+

1

2

�2u

��2 + �u�2u = 0 �1�

is fully equivalent to a nonlinear Helmholtz �NLH� equation
�5� and accurately describes the evolution of the complex

scalar field of a sufficiently broad beam in a planar Kerr
medium. The space coordinates �z ,x� are scaled as �=z /LD

and �=�2x /w0, where LD=kw0
2 /2 is the diffraction length of

a Gaussian beam with waist w0, and �=1/ �k2w0
2�

= �� /w0�2 / �4�2n0
2�, u is the �TE� normalized electric field,

E�x ,z�=E0u�x ,z�exp�ikz�, k=2�n0 /�, n0 is the linear refrac-
tive index, � is wavelength, E0= �n0 / �kLDn2��1/2, and n2 is
the Kerr coefficient.

Equation �1� has an exact bright soliton solution �6,7�
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describing a spatial beam propagating at an angle �in un-
scaled coordinates� of �=tan−1��2�V� to the longitudinal ref-
erence direction. 	 and V are, respectively, the soliton am-
plitude and transverse velocity parameters. The defocusing
Kerr NLH equation has also recently been shown to have a
Helmholtz soliton solution �8�.

The interpretation of the word “nonparaxial” is commonly
oversimplified to imply only narrow-beam nonparaxiality
�9–12�. In fact, “nonparaxial” means “not paraxial,” i.e.,
without the paraxial approximation. In this paper, we present
precise definitions of three distinct types of nonparaxiality,
along with their individual physical correspondences and
their relation to the general paraxial approximation. It is well
known that narrow-beam effects involve additional consider-
ations �e.g., vectorial effects� in the modeling, but one can
clearly distinguish narrow-beam nonparaxiality from
Helmholtz-type nonparaxiality. Moreover, a rigorous math-
ematical argument can support this distinction through pre-
cise quantification of the degree of Helmholtz-type
nonparaxiality through the magnitude of the angle �.

The identity relating � to velocity V proves that the Helm-
holtz correction 2�V2, appearing in the exact analytical so-
lution �2�, may assume arbitrary large values for obliquely
propagating beams. Firstly, this verifies that Helmholtz non-
paraxiality is highly significant for such broad scalar beams.
Secondly, this proves that the commonly used mathematical
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basis for narrow-beam nonparaxiality �where � is the single,
narrow-beam, order-of-magnitude parameter� is strictly in-
valid in this angular regime. These observations lend weight
to the technical soundness of our approach. They also over-
turn a growing misconception, that has become rooted during
the last three decades �13�, that nonparaxiality implies nar-
row beams and that its analysis needs to be consistent with
results from single ��� parameter expansion approaches.

The corresponding NLS solitons are recovered when an
appropriate multiple limit is enforced. For solution �2�, one
requires �→0 �beam not too narrow�, �	2→0 �beam not too
intense�, and �V2→0 �propagation angle not too large�.
These individual conditions are simultaneously required in
the paraxial approximation that is captured by the single
limit �����u�→0. The nonparaxial term ����u may thus con-
tribute to distinct nonparaxial scenarios, such as during in-
tense self-focusing �14� or when propagating beams deviate
significantly from the axial direction. The former context can
lead to beam narrowing that entails more involved field de-
scriptions �14–16�. The latter context introduces a Helmholtz
type of nonparaxiality for which Eq. �1� is an adequate
model �8�.

Equation �1� preserves the rotational symmetry of the
wave propagation problem, whereby there is no physical dis-
tinction between the space coordinates �5�. A single
Helmholtz soliton can thus be propagating at an arbitrary
angle �. The fully second-order NLH equation can also de-
scribe the behavior of multiple soliton beams that propagate
simultaneously in arbitrary directions.

Here, we consider two such beams, u1�� ,�� and u2�� ,��.
Without loss of generality, we assume they are launched at
angles � and −�, respectively, and set u�� ,��=u1�� ,��
+u2�� ,�� in Eq. �1�. These beams modulate the refractive
index of the Kerr medium according to �u�2= �u1�2+ �u2�2
+u1u2

*+u2u1
*. The last two terms define a real grating that is

superimposed on the refractive-index variations due to the
individual intensities of the solitons. The grating can result in
both enhancement of cross-phase modulation �XPM� and the
existence of phase-sensitive terms. To describe the full range
of coherence, a grating factor h is introduced and the total
XPM contributions are expressed as �1+h��u3−j�2uj, where
j=1,2. The grating parameter has limits h=0 and h=1 for
incoherent and coherent interactions, respectively.

For intermediate interaction angles, phase-sensitive terms
can be neglected in the analysis. The interaction is then
intensity-driven and governed by coupled equations
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Since we are considering relatively broad beams, the associ-
ated narrow angular spectra imply that the neglected terms
would have resonance, i.e., have contribution to Eq. �3�, in
the case of vanishingly small angles of interaction. Thus, the
classification of “intermediate interaction angles” refers to all
angular geometries except those of paraxial interactions.
Soliton collisions induce a trajectory phase shift � j, for each
participating beam, as depicted in Fig. 1 and as described by
Eq. �3�. In the symmetric-interaction reference frame, speci-

fied above, ��1�= ��2�= ���. The NLS equation predicts a
monotonically decreasing ��� with increasing angle �17�, in
disagreement with the symmetry of collisions described by
Eq. �3�.

Figures 1�a�–1�c’� illustrate the intrinsic symmetry of the
collision process governed by Eq. �3�. Solid lines sketch
typical colliding soliton paths and dashed lines trace paths of
the corresponding unperturbed solitons; these paths define a
trajectory phase shift in each case. The arrows, superimposed
on each solid line, show the directions of the soliton beams.
Three novel properties can be highlighted: �i� for intensity-
driven collisions such as those described by Eq. �3�, if neg-
ligible radiation is produced then the graph obtained by re-
versing the direction arrows of one or both solitons must
describe another valid soliton collision geometry; �ii� When
�=45°, � must then vanish on symmetry grounds. Physi-
cally, since no net transverse perturbation acts on either soli-
ton, the soliton trajectories are two perpendicular straight
lines. �iii� The rotational invariance of the NLH equations
can translate into rotational invariance of soliton collision
geometries. A case of ��45° is shown in Fig. 1�a�. Property
�ii� is illustrated in Fig. 1�b�, where �=45°. For ��45°, one
can rotate Fig. 1�a� by 90° to obtain Fig. 1�a’�. Then, reversal
of the propagation direction of one of the solitons gives the
configuration shown in Fig. 1�c�. The latter operation results
in a change in sign of �. Similar reasoning permits one to
construct the geometries shown in Figs. 1�c’� and 1�b’�.

We denote as FF those configurations of two forward �co-
propagating� beams, such as those shown in Figs. 1�a�–1�c�.
Each configuration of copropagation can thus be rotated
by 90° to describe an interaction of forward and backward
beams �denoted FB�. For cases �a�–�c�, there is correspon-
dence in the pairs �a ,c’�, �b,b’�, and �c ,a’�. Identification
of this symmetry permits alternative approaches to the

FIG. 1. Geometry of Helmholtz soliton collisions dominated by
the individual beam intensities. �a� to �c� correspond to the FF con-
figuration and �a’� to �c’� to the FB configuration. Magnitude of the
trajectory phase shift obtained from the numerical integration of �d�
Eq. �1� and �e� Eq. �3� for coherent �C� and incoherent �I� cases for
�=0.001.
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computer simulation of intermediate-angle interactions.
Since the NLH equation supports both forward and back-
ward solution components, an initial condition for numerical
integration may contain an input soliton �propagating in
the forward direction� along with an output soliton �resulting
from propagation in the backward direction�. For example,
if a collision involves negligible radiation, which we
find generally true in the intermediate-angle regime, a valid
copropagating solution can be obtained by rotating the
counterpropagating solution by 90°.

The mathematical and physical properties of the NLH
equation are retained in the numerical algorithm �18� we use
to solve Eq. �1�. Figures 1�d� and 1�e� show the magnitude of
the trajectory phase shift obtained from solutions of Eqs. �1�
and �3� for both coherent and incoherent regimes of FF and
FB configurations. All numerical results are found to repro-
duce the required symmetry of the problem, and confirm the
validity of the 90° rotational equivalence, over a wide angu-
lar range. The values of � were obtained by fitting each
numerical solution to a pair of hyperbolic secant beams, be-
fore and after the collision, to locate the soliton centers. The
trajectory phase shifts � were then calculated from the soli-
ton shifts in the � direction �� using �=�� cos �, where
cos �=1/�1+2�V2.

The NLS equation predicts that two equal-amplitude soli-
ton beams with opposite transverse velocities emerge from
the collisions studied here. Numerical solution of the NLH
equation �1� reveals that amplitudes and widths may undergo
small reshaping oscillations, similar to those seen in per-
turbed single-soliton initial-value problems �7�. Reshaping is
accompanied by a small shedding of radiation that only be-
comes significant in small �paraxial� ranges of collision
angles �i.e., for both copropagating and counterpropagating
colliding solitons�. This radiation phenomenon is typical of
soliton interactions in nonintegrable systems, such as the
equations describing coherent collisions of almost-exactly
counterpropagating solitons �4�. For nonparaxial angles, col-
lisions are remarkably close to elastic, even in the presence
of strong longitudinal and transverse gratings. The existence
of radiation is of qualitative importance as it indicates the
absence of an exact two-soliton solution and the nonintegra-
bility of the NLH equation. The lack of such a NLH multi-
soliton solution was suggested in Ref. �19�. We note that
Hirota’s method also fails to find this solution.

An alternative analytical basis has thus been developed
for studying intermediate-angle collisions. Our approach is
based on an adiabatic perturbation method �19� that exploits
the exact Helmholtz one-soliton solution �2�. It proves con-
venient to work within a framework where rotational sym-
metry is explicitly restored. A suitable NLH equation
is found from Eq. �3� by writing uj =uj� exp�−i� /2�� and
�=�2��� to give

1

2

�2uj
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1

2

�2uj

��2 +
1

4�
uj + �uj�2uj = Rj�uj,u3−j� , �4�

where R�uj ,u3−j�=−�1+h��u3−j�2uj, and primes have been
dropped for simplicity. In the absence of perturbations,
Rj =0, Eq. �4� have the exact bright soliton solutions

uj��,�� = 	 j sech�	 j�� cos � j + � sin � j��


exp�i�1 + 2�	 j
2

2�
�− � sin � j + � cos � j�� .

�5�

Substituting uj�� ,��= j�� ,��exp�i� j�� ,��� in Eq. �4�, one
obtains � ·p j =0, where p j =

1
2 j

2�� j and ����� ,���.
Integrating over the transverse coordinate � gives a state-
ment of conservation of energy flow in the � direction
�6,7�: d�Pj =0, where Pj =�−�

+� d�
1
2 j

2��� j. For each soliton,
Pj =	 j�1+2�	 j

2�1/2 / �2��1/2 and is independent of the propa-
gation direction. Introduction of a perturbation, Rj�0, of the
type discussed above, does not alter the total beam energy
flow. One finds that d�Pj =�−�

+� d� Im�Rj exp�−i� j��=0 for
XPM-driven interactions. In the paraxial case, the first in-
variant of the NLS equation gives, within a similar calcula-
tion, the condition d�	 j =0. It is important to note that this is
not the case for the NLH equation, since conservation of the
energy flow does not guarantee nonevolving soliton ampli-
tudes and widths.

For Rj =0, Eq. �4� can be derived from the Lagrangian
densities
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and this provides two divergence relations

�mqj
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+

�Jqj

��
= 0, q = �,� . �7�

Equation �7� may be regarded as a pair of continuity equa-
tions. These relations exhibit the required symmetry of in-
variance under �↔�. Considering � as the evolution coordi-
nate, the conserved densities are m�j =

1
2 ���uj

*��uj +��uj
*��uj�

and m�j =
1
2 ����uj�2− ���uj�2�+ 1

2 �uj�4+ 1
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sociated currents are J�j =
1
2 ����uj�2− ���uj�2�+ 1

2 �uj�4+ 1
4� �uj�2

and J�j
=m�j

. This gives a pair of propagation invariants,
M�j =�−�

+�d�m�j and M�j =�−�
+�d�m�j, that define a soliton vec-

tor �M�j ,M�j�=	 j�3+4�	 j
2� / �3���−sin � j , cos � j�.

Using the perturbed system �4�, one can obtain a set of
four equations of motion:

dMqj

d�
= 2�

−�

+�

d� Re�Rj
*�uj

�q
�, j = 1,2; q = �,� . �8�

In order to quantify how soliton 3− j influences the evolution
of soliton j, approximate analytical results are derived.
New coordinates are introduced that have an evolution
variable s along the initial propagation direction of soliton j,
and perturbations to this soliton are quantified in a dimension
t transverse to s. The angular deviation of the soliton is
assumed to be sufficiently small, �� j�s��O���, that an
appropriate ansatz is
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uj�t,s� = aj sech�bj�t + t0j��exp�i�0j�− �� j�t + t0j� + � j�� .

�9�

The parameters aj�s�=	0j +�aj�s�, bj�s�=	0j +�bj�s�, t0j�s�,
and � j�s�=s+�� j�s� give the amplitude, inverse width, posi-
tion and phase variation along the soliton center, respec-
tively, and dt0j /ds=�� j. Constant �0j = �1+2�	0j

2 �1/2 / �2��,
and 	0j is the unperturbed soliton amplitude �assumed order
unity�. Choice of the �t ,s� reference frame allows one to
express perturbations in terms of various orders of �. The
analysis should allow XPM-induced refractive-index
changes to modify soliton amplitude, width, and phase in a
way that preserves energy flow. Simulations of soliton j col-
liding with an unperturbed orthogonal beam show amplitude
and phase slope perturbations of O���, while soliton width
remains unchanged. For arbitrary collision angles, width
variation is assumed to be due to geometrical broadening �6�,
whereby bj�s�=	0j cos �� j and �bj =O��� j

2��O��2�. The
evolution equation for Mtj yields

d

ds
��� j� = − 2�1 + h��	0j

2�
−�

+�

dt�u3−j�t,s��2 sech 2�	0j�t

+ t0j��tanh�	0j�t + t0j�� . �10�

Consideration of Msj provides an expression for �aj that,
when combined with the energy flow requirement of
�aj =−1/2	0jd /ds��� j�, gives

d

ds
��� j� = �1 + h��	0j�

−�

+�

dt�u3−j�t,s��2 sech 2�	0j�t + t0j�� ,

�11�

where, as with Eq. �10�, only terms up to O��� have been
retained.

Figure 2�a� shows the magnitude of the trajectory phase
shift �, for both coherent and incoherent interactions, ob-
tained from this approximate analytical approach. An ap-
proximate solution is first obtained by considering the inter-
action of soliton j with an unperturbed soliton u3−j

0 �t ,s�.
Results are then refined iteratively using the earlier values of
t0j�s� in the equations. Predictions are in good qualitative and
quantitative agreement with the full numerical results. Fig-
ures 2�b�–2�d� give a detailed account of the evolution of
soliton j parameters when soliton 3− j remains unperturbed.
Results from the adiabatic perturbation approach �points� are
compared with those from the full NLH equation �1� �lines�.

Excellent agreement is found between theoretical prediction
and the numerical solution in all cases.

In summary, we have extended the theory of spatial Kerr
soliton collisions to include arbitrary interaction angles. Both
numerical and analytical investigations have also been un-
dertaken. In particular, significant radiation generation aris-
ing from counterpropagating coherent solitons, predicted in
Ref. �4�, is found to occur only for near-exact alignment of
beams. Soliton robustness is reported for all intermediate-
angle collision geometries. Our approach and results, arising
from a generic modification to the linear wave operator, are
also expected to have implications for other solitons �e.g.,
vector and algebraic� and for solutions of other wave equa-
tions �e.g., involving higher dimensions and modified
nonlinearity�.
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