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We give a brief overview of some new results
in Helmholtz soliton theory. Firstly, fundamen-
tal considerations are made in terms of new con-
texts for Helmholtz solitons that arise directly from
Maxwell’s equations. We then detail applications of
Helmholtz solitons in material interface geometries:
generalising Snell’s law to nonlinear beams and re-
porting new qualitative phenomena. Novel fami-
lies of bistable soliton solutions to a cubic-quintic
Helmholtz equation are also presented. Finally, an
analysis of counterpropagating beams that includes
new bidirectional solitons is summarized. This pa-
per is dedicated to the late Dr. Valery E. Grikurov.

1 Introduction

Helmholtz equations provide an analytical platform
for understanding oblique (off-axis) and longitudi-
nal grating aspects of optical beam propagation.
They play a key role in modelling many photon-
ics applications since even the simplest geometries
- for example, multiplexing [1] and interface config-
urations [2] - have intrinsically angular characters
that are inaccessible from conventional (paraxial)
theory.

It is now well known that, by retaining the
full generality of a governing nonlinear Helmholtz
(NLH) equation, one can capture scalar beam evo-
lution at any angle with respect to the reference
axis [3, 4]. In contrast, paraxial theory is re-
stricted to modelling beams that each travel along,
or very-nearly along, this axis. The validity of the
Helmholtz approach requires λ/w0 ≡ ε � O(1),
where λ is the free-space carrier wavelength and w0

is the beam waist. Since ε� O(1) must always be
satisfied, one may ignore vector corrections to the

governing equation that are necessary in narrow-
beam regimes, i.e., where ε ∼ O(1) [5, 6].

In this paper, we compare the predictions of
Helmholtz modelling to those of Maxwell’s equa-
tions. A description of soliton beams incident on
material interfaces is then presented, including the
report of a modified Snell’s law. Next, we outline
some key properties of bistable Helmholtz solitons.
Finally, an asymptotic analysis of counterpropagat-
ing Helmholtz soliton beams is detailed.

2 Maxwell’s Equations

A TE-polarized electric field E(x, z, t) =
ŷEy(x, z, t) confined to a two-dimensional planar
waveguide is governed by the Maxwell equations
[7]
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Here, propagation takes place in the (x, z) plane.
In a Kerr medium, the relative dielectric permit-
tivity is well described by εr ≡ n2 = n2

0 +δNL (Ey),
where n0 is the linear contribution to the total re-
fractive index n. In sufficiently slow media, where
the characteristic response time of the nonlinear-
ity is much greater than the temporal period of the
field oscillations, one has δNL ≈ 2n2

0n2

〈
E2
y

〉
, where

n2 is the Kerr coefficient and 〈〉 denotes the time-
average over many optical cycles. Such dynamics
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Figure 1: (a) Splitting of an N = 3 soliton
in the NLH model. (b) The splitting phe-
nomenon uncovered in Maxwell’s equations,
for an instantaneous medium nonlinearity, is
accompanied by 3rd harmonic generation. (c)
In a slow medium, harmonic generation is sup-
pressed.

are typically modelled by a Debye relaxation equa-
tion [8].

For a continuous-wave beam Ey(x, z, t) =
<{E0u(x, z) exp [i(kz − ω0t)]}, one can derive a
scalar NLH equation for the (dimensionless) com-
plex envelope u [3]:

κ
∂2u

∂ζ2
+ i

∂u

∂ζ
+

1
2
∂2u

∂ξ2
± |u|2u = 0. (4)

The normalization is ζ = z/LD and ξ =
√

2x/w0,
where LD = kw2

0/2. The (inverse) beam width is
quantified by κ = 1/(kw0)2 = ε2/4π2n2

0 � O(1),
where k = n0k0 and k0 = ω0/c = 2π/λ. Finally,
E0 = (n0/|n2|kLD)1/2 and the ± sign flags a focus-
ing/defocusing nonlinearity.

Figure 2: (a) Stable soliton refraction in a typ-
ical geometry for the material interface prob-
lem. Complex soliton evolution at the inter-
face between two media that have the same
linear refractive index, but different Kerr coef-
ficients: (b) α2 < α1, and the beam undergoes
diffractive broadening; (c) α2 > α1, and the
soliton splits into several narrower solitons.

Helmholtz nonparaxiality acts as a perturba-
tion that can modify the propagation properties of
multi-soliton solutions of the nonlinear Schrodinger
equation. For instance, during the initial focusing
stages of periodic evolution, the Helmholtz operator
κ∂ζζ in Eq. (4) increases the period of a two-soliton
bound state [9]. A similar effect has been confirmed
by numerical solution of the full Maxwell equations
[7].

When even stronger nonparaxiality is present,
a launched high-order soliton can become suscep-
tible to a fission instability, whereby the bound
state breaks up into its constituents [9]. Figure
1(a) illustrates the splitting of a 3rd-order beam
into three fundamental Helmholtz solitons. Figure
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1(b) displays the electric field amplitude at a given
instant, obtained by solving Maxwell’s equations
(1)-(3) and assuming an instantaneous nonlinear-
ity. The two simulations are in good qualitative
agreement, but there are noticeable differences in
the detailed evolution for the two cases. These dif-
ferences have been found to have their origin in
the presence of parametric conversion to the third
harmonic 3ω0 in the strong focusing stages of the
Maxwell representation. This effect provides a loss
mechanism for the fundamental frequency compo-
nent, thereby introducing an additional perturba-
tion that modifies the propagation properties of the
beam. Harmonic generation is omitted in Eq. (4),
where only a single spectral component ω0 is con-
sidered.

We find that third harmonic generation, and
higher-order wave-mixing processes, are suppressed
by a relatively slow nonlinear response. This is il-
lustrated well in Fig. 1(c), which shows the cal-
culated electric field amplitude at a specific time.
The description of the fission process, in the region
of space shown in Fig. 1(c), is in excellent agree-
ment wih the results obtained using scalar model
(4). Nevertheless, the detailed temporal evolution
exhibits rich dynamics that are determined by the
choice of medium response time. This scenario con-
trasts strongly with evolution in an instantaneous
medium.

3 Solitons at Interfaces

The oblique incidence of solitons at the boundary
separating two Kerr-type dielectrics [see Fig. 2(a)]
can be well-described by a Helmholtz model [2].
The interface is characterized by the parameters
(n01, α1) and (n02, α2), where n0i and αi (i = 1, 2)
are the linear refractive indices and Kerr coeffi-
cients, respectively, so that u is governed by

κ
∂2u

∂ζ2
+ i

∂u

∂ζ
+

1
2
∂2u

∂ξ2
+ |u|2 u =[

∆
4κ

+ (1− α) |u|2
]
H(ξ)u, (5)

whereH is a Heaviside function, ∆ ≡ 1−(n02/n01)
2

and α ≡ α2/α1.
Simulations show that, when there is a mismatch

in only the linear part of the refractive index, the
incident solitons are governed by Snell’s law. In
general, soliton beam reflection and refraction char-
acteristics possess key features that cannot be ad-
equately described by paraxial theory. We have

found that the classic Snell’s law (for linear plane
waves) also applies to such nonlinear beams when
it is supplemented by a parameter γ, so that

γn01 cos θi = n02 cos θt, (6)

where θi and θt are the angles of incidence and re-
fraction, respectively, measured with respect to the
interface, and

γ =
[

1 + 2κη2
0

1 + 2κη2
0α(1−∆)−1

]1/2

. (7)

Here, we also report new behaviour when the
linear refractive index is continuous across the in-
terface. When a soliton enters a medium with a
weaker nonlinearity (α2 < α1), the outgoing beam
may suffer diffractive spreading without limit - un-
less the input power exceeds some critical value [see
Fig. 2(b)]. However, when the second medium is
characterized by a stronger nonlinearity (α2 > α1),
excess power associated with the incident soliton
can cause the beam to break up into a distribution
of narrower solitons [see Fig. 2(c)].

The Helmholtz model of interface geometries
(5) yields important quantitative corrections to
paraxial predictions [10, 11] that can exceed 100%
[2]. Moreover, significant qualitative differences be-
tween the two descriptions appear when α2 > α1.
In the paraxial regime, the number of secondary
solitons increases depending on γ. Helmholtz mod-
elling shows that a more restrictive number of soli-
tons is actually created. We also find that the
multi-soliton structure that develops depends not
only on the aforementioned index relationship, but
also on θi.

4 Bistable Solitons

A more general class of dielectric media is described
by δNL(Ey) ≈ 2n2

0

(
n2E

2
y + n4E

4
y

)
. For this model,

the governing NLH equation is [12]

κ
∂2u

∂ζ2
+ i

∂u

∂ζ
+

1
2
∂2u

∂ξ2
+ |u|2u+ α|u|4u = 0, (8)

where α ≡ n4|E0|2/n2. We have derived exact
analytical solitons to Eq. (8) that capture the
generic features expected for Helmholtz solutions
[i.e., features of κ-type, κ × intensity-type, and
κ×(velocity)2-type]. The known paraxial solutions
[13, 14] can be recovered by enforcing a simultane-
ous algebraic multiple limit. This limit corresponds
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Figure 3: Angular beam broadening for (a)
upper- and (b) lower-branch Helmholtz soli-
tons. Solid: θ = 0◦ (paraxial), dashed: |θ| =
30◦, dotted: |θ| = 45◦, dot-dashed: θ = 60◦.
The paraxial profile is insensitive to |θ|.

to the slowly-varying envelope approximation, and
it is thus formally equivalent to κ∂ζζ → 0.

A key quantity is the product 2κV 2 = tan2 θ,
where V is the conventional transverse velocity pa-
rameter and θ is the propagation angle of the beam
relative to the z direction [3]. As |θ| increases, the
projected beamwidth measured in the (x, z) frame
also increases, irrespective of both κ and the sys-
tem nonlinearity (see Fig. 3). In paraxial mod-
elling, one must always respect 2κV 2 � O(1). For
moderate and large angles, where 2κV 2 is no longer
negligibly small, we have uncovered corrections to
paraxial theory that can exceed 100%. Thus, off-
axis propagation alone can define a type of angular
nonparaxiality, where 0 < 2κV 2 ≤ ∞ (equivalent
to 0 < |θ| ≤ 90◦) in such a way that the narrow-
beam inequality κ� O(1) is always preserved.

When α < 0, one can identifiy pairs of solutions
that possess the same (intensity) half-width-at-half-
maximum but have different peak intensities (see
Fig. 4). Such solutions appear to be the first
reported bistable Helmholtz solitons [12]. Exten-
sive numerical simulations have shown that soliton
states lying on both solution branches are robust
against perturbations.

Figure 4: Bistable solution families relating
the beam peak amplitude ρ1/2

0 to the material
parameter α < 0. The parameter ν deter-
mines the half-width of the normalized inten-
sity distribution in units of ∆ ≈ 0.77.

5 Counterpropagation Solitons

Counterpropagating beams have been routinely de-
scribed within the framework of paraxial theory
[15, 16]. A Helmholtz treatment can be more appro-
priate either because of inherent angular geometry
[1] or to account for longitudinal grating effects.
The new asymptotic analysis here uncovers novel
counterpropagating solitons of NLH equations.

By substituting u(ξ, ζ) = ψ(ξ, ζ) exp (−iζ/2κ)
into Eq. (4), one transforms from a forward ref-
erence frame to one that is essentially stationary.
One finds

κ
∂2ψ

∂ζ2
+

1
4κ
ψ +

∂2ψ

∂ξ2
+ F

(
|ψ|2

)
ψ = 0, (9)

where F (|ψ|2) is any smooth nonlinearity function
for which F (0) = 0. For simplicity, a re-scaling of√

2ξ → ξ has been implemented in Eq. (9). Since
κ� O(1), a perturbative analysis is performed us-
ing κ as an expansion parameter. We investigate
asymptotic solutions to Eq. (9) of the form:

ψ(ξ, ζ) = ψ0(X, ζ) cos Θ +
∞∑
j=1

κjψj(ξ, ζ;Z), (10)

where Θ ≡ Z+φ(ξ, ζ), X = ξ−vζ, v is a transverse
speed, and Z = ζ/2κ. Here, ψ0 and {ψj(ξ, ζ;Z)}
are assumed to be real smooth functions that van-
ish exponentially as |ξ| → ∞. Counterpropagating
solutions with a wavelength-scale ζ−periodic grat-
ing characteristic are sought. Functions ψj are thus
required to be 2π−periodic in Z. Following gen-
eral multiple-scales techniques, we assume that Z
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Figure 5: Transverse profiles ψ0(X) of lo-
calised counterpropagating solutions for two
(related) nonlinearity functions. The value A
refers to peak amplitude.

is independent of ζ, and that Z−derivatives of the
unknown functions are ∼ O(1) as κ→ 0.

By substituting Eq. (10) into Eq. (9) and equat-
ing terms at various powers of κ, it is straightfoward
to see that the contribution at O(κ−1) is identically
zero due our choice of the cosine function in ansatz
(10). At O(κ0), one finds

−1
4

(
∂2ψ1

∂Z2
+ ψ1

)
= A cos Θ +B sinΘ

+
∞∑
m=1

fm(ψ2
0)ψ0 cos[(2m+ 1)Θ], (11)

where the coefficients of the cos and sin terms are
A ≡ (ψ0)XX − (φζ + φ2

ξ + φξξ)ψ0 + f0(ψ2
0)ψ0 and

B ≡ (v − 2φξ)(ψ0)X − (ψ0)ζ − ψ0φξξ, respectively,

fm(s) =
∞∑
n=m

F (n)(0)
n!

(
m+ n+ 1

2n+ 1

) (s
4

)n
,

(12)

and
(
p
q

)
denotes a binomial coefficient. Periodic

solutions to Eq. (11) exist only when A = B = 0.
It is consistent to seek particular solutions where

φ(ξ, ζ) = vξ/2 +Kζ, and K is a constant. It then
follows that ψ0 must satisfy(

dψ0

dX

)2

= Ωψ2
0 −

∫ ψ2
0

0

dsf0(s), (13)

where Ω = K + v2/4. The integral in Eq. (13)
can be evaluated analytically for some specific non-
linearity functions, such as the dual power-law

Figure 6: The interaction of counterpropagat-
ing Helmholtz solutions derived from full so-
lution of Eq. (9), with κ = 0.01,Ω = 2, v = 2
and a Kerr nonlinearity. The evolution of field
amplitude |ψ| is mapped out from ζ = 0 to 4,
within a transverse domain of ξ = −10 to 10.

f0(ψ2) = (p+ 1)ψ2p − α(2p+ 1)ψ4p. This includes
Kerr nonlinearity when p = 1 and α = 0, while for
general p and α, one finds the solution

ψ0(X) =
[

2Ω
1 +

√
1− 4αΩ cosh(2p

√
ΩX)

]1/2p

.

(14)
Once ψ0(X) is known, it can be shown that

ψ1(ξ, ζ;Z) = C1(ξ, ζ) cos Θ

+
∞∑
m=1

fm(ψ2
0)ψ0

4 cos[(2m+ 1)Θ]
(2m+ 1)2 − 1

,

(15)

where the function C1(ξ, ζ) is given by solvabil-
ity conditions of the O(κ1) equations, and the
Z−dependence on the right-hand-side of Eq. (15)
is implicit within Θ.

It is also straightforward to employ numerical
solution of Eq. (13) to determine the transverse
profiles of counterpropagating solutions for a wider
class of nonlinearities. Localised solutions for a sat-
urating nonlinearity, f0(ψ2) = 2ψ2/(1 + αψ2), and
its two-term polynomial approximation, f0(ψ2) =
2ψ2(1− αψ2), are shown in Fig. 5.

Finally, we illustrate the solitonic character of
the localised counterproagating solutions. Figure 6
shows a numerical solution of Eq. (9) involving two
initially well-separated localised components. The
form of each component is chosen to match ansatz
(10) at ζ = 0. Subsequent stable propagation and
interaction, each exhibiting the wavelength-scale
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oscillatory features in ζ, are mapped out vertically
in this field-modulus plot.
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