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The transmission line matrix method is used to study Helmholtz solitons as solutions of
the two-dimensional time-domain Maxwell equations in nonlinear media. This approach
permits to address, in particular, the propagation and intrinsic stability properties of
subwavelength soliton solutions of the scalar nonlinear wave equation and the behavior
of optical solitons at arbitrary interfaces. Various numerical issues related to the analysis
of soliton beams using the time-domain method are also discussed.
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1. Introduction

The two-dimensional (2D) nonlinear scalar wave (SW) equation is conventionally
used for the study of soliton light beams. This equation describes exactly the non-
linear evolution of pure 2D transverse electric (TE) electromagnetic fields, but it
is also a very good theoretical framework for most common planar experimental
setups.1 For continuous-wave (CW) beams under paraxial propagation conditions,
the nonlinear SW equation reduces to the nonlinear Schrödinger (NLS) equation
that is a standard mold for the analysis of spatial optical solitons.2 The NLS equa-
tion can be integrated analytically,2 for a certain class of material responses, or
numerically, using highly efficient algorithms.3

If paraxial propagation is not assumed, the scalar nonlinear Helmholtz (NLH)
equation is obtained from the SW equation in the CW case without the resource
of any approximation. The NLH framework allows to study optical solitons under

1250031-1

http://dx.doi.org/10.1142/S0218863512500312


November 9, 2012 11:1 WSPC/S0218-8635 145-JNOPM 1250031

P. Chamorro-Posada & G. S. McDonald

arbitrary angular nonparaxial conditions.4–6 A class of numerical algorithms7 has
been put forward for the effective computational solution of this nonintegrable8

nonlinear evolution equation and has permitted to assess the robustness of the
exact Helmholtz soliton solutions in a range of nonlinear optical materials9–14 and
to unveil new effects of soliton propagation and in their interaction with inter-
faces.8,15–18

In spite of the effectiveness of the nonparaxial beam propagation method6

(NPBPM) for the solution of such a broad range of problems, it is not absolutely
free of limitations. Since the NLH equation is of second-order in the evolution
coordinate, those components of the angular spectrum corresponding to evanescent
waves must be filtered out as part of the propagation algorithm. Otherwise, they
would show up in the solution as exponentially growing signals.6 The filtering incor-
porated in the numerical algorithm restricts the situations that can be studied to
those where deviations of the total (linear and nonlinear) refractive index relative
to that of a reference value are very small. Therefore, only small intensity beams
with very modest self-induced nonlinear contribution to the refractive index can
be considered. This type of optical signals corresponds, precisely, to those properly
described by SW equation and define a type of (angular) Helmholtz nonparaxiality.
An archetypal Helmholtz nonparaxial problem is that of the behavior of optical
solitons at the planar boundary between two nonlinear media.15–18 Notwithstand-
ing the wealth of the new interface phenomena that have been uncovered using
Helmholtz theory, the numerical studies based on the NPBPM are limited to very
small relative differences in the linear and nonlinear refractive indexes.

In this work, we use the transmission-line matrix (TLM) method19–21 for the
study of the solitons of the scalar NLH equation solving the 2D time-domain
Maxwell equations in CW case. We show that this approach permits to investi-
gate the behavior of optical solitons at arbitrary optical interfaces and also allow
us to extend our analyses to the high-intensity nonparaxial regime. In particular,
subwavelength soliton solutions of the NLH equation are known to exist,22 in spite
of the fact that they are not expected to represent a solution physically feasible in
a straightforward manner. These solutions belong to the family of the Helmholtz
solitons4 when this is extended to the ultra-narrow regime. Notwithstanding, in any
realistic scenario, neither scalar nor reasonably true 2D propagation can be assumed
under such strong nonlinear propagation conditions capable of raising polarization
and high-order nonlinear effects, but the issues of the existence and the stability
of scalar subwavelength solitons are still of theoretical interest and they have been
the subject of discussion in the scientific literature.22,23 The use of the time-domain
Maxwell equations also opens other possibilities for the extension of previous stud-
ies, for instance, by the inclusion of the temporal dynamics.

Even though beam propagation methods3 combining high numerical accuracy
and computational effectiveness have largely dominated the numerical studies on
optical solitons, the steady increase of the available computing power has opened
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the numerical investigations to time-domain integrators of the nonlinear Maxwell
equations over the last decade. The finite-difference time-domain (FDTD) method
is the most common alternative and it has been employed in the study of the
propagation of light bullets,24 the interaction of soliton beams25 or the interaction
of ultra-narrow solitons with left-handed surfaces.26 Nevertheless, the FDTD is not
the only tool for the time-domain integration of Maxwell equations; for instance,
direct integrators27 have also been used.

The TLM method was first introduced by Johns and Beurle19 and has been
applied mostly in the fields of radio frequency and power systems but also in acous-
tics and diffusion problems.21 In Ref. 28 it was used for the analysis of 2D linear
photonic devices. Even though TLM and FDTD display similar performance prop-
erties, the TLM method still holds conceptual advantages that make it specially
appealing. Instead of producing a discrete approximate numerical representation
for the physical dynamics as in the FDTD method, the formulation of the TLM
method creates an approximate physical model for the physical system we want to
analyze. This model is then solved exactly. Also, the TLM formulation of linear
passive propagation problems is subject to the laws of conservation of charge and
energy and, therefore, is unconditionally stable. This stability, based on physical
grounds, can be preserved in a judicious formulation of the TLM algorithm for the
propagation in nonlinear media.

2. 2D Maxwell Equations and the NLH Equation

We consider the 2D propagation of a light field as described by the full Maxwell
equations. In a pure 2D scenario the spatial variations along one particular coor-
dinate (y, in our case) are null, ∂y = 0, and Maxwell equations decouple into two
independent systems of equations that have attached two corresponding types of
solutions that evolve in the xz propagation plane. The transverse magnetic (TM)
solutions have an electric field intensity lying on the propagation plane whereas
the magnetic field intensity is polarized in the y direction. In the TE solution, the
polarization properties of the electric and magnetic fields are reversed.

We focus here on the TE problem with E(x, z, t) = ŷEy(x, z, t) for which
Maxwell equations in a nonmagnetic medium are

∂Ey(x, z, t)
∂x

= −µ0
∂Hz(x, z, t)

∂t
, (2.1)

∂Ey(x, z, t)
∂z

= µ0
∂Hx(x, z, t)

∂t
and (2.2)

∂Hx(x, z, t)
∂z

− ∂Hz(x, z, t)
∂x

= ε0n
2(x, y)

∂Ey(x, z, t)
∂t

, (2.3)

where µ0 = 4π × 10−7 H/m is the magnetic permeability, ε0 = (µ0c
2)−1 F/m is the

vacuum permittivity and n the refractive index. If we take the x derivative in (2.1),
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the z derivative in (2.2) and the time derivative in (2.3), upon substitution of the
results of (2.1) and (2.2) in (2.3), the wave equation

∂2Ey(x, z, t)
∂x2

+
∂2Ey(x, z, t)

∂z2
− µ0ε0n

2(x, y)
∂2Ey(x, z, t)

∂t2
= 0, (2.4)

is obtained.
In the time-harmonic CW case, the spatial evolution of the electric field intensity

is described by the complex field Ẽ(x, z) with Ey(x, z, t) = �{Ẽ(x, z) exp(−iω0t)}.
When this expression is substituted into (2.4), one obtains the Helmholtz equation

∂2Ẽ(x, z)
∂x2

+
∂2Ẽ(x, z)

∂z2
+

ω2
0n

2(x, y)
c2

Ẽ(x, z) = 0, (2.5)

where nonlinearity is brought into the evolution equation through the relation

n2 = n2
0 + n2

NL(E). (2.6)

If the nonlinear contribution to the refractive index is assumed to be n2
NL =

2n0n2|Ẽ|2 (where n0 is the linear refractive index and n2 the Kerr coefficient)
and the complex electric field intensity is written in terms of a normalized complex
envelope u(x, z) as Ẽ(x, z) =

√
Iu(x, z) exp(ikz), where I = (kn2LD/n0)−1 and

k = (ω0/c)n0 = 2π/λ, one obtains the nonparaxial nonlinear Schrödinger (NNLS)
equation4

κ
∂2u(ξ, ζ)

∂ζ2
+ i

∂u(ξ, ζ)
∂ζ

+
1
2

∂2u(ξ, ζ)
∂ξ2

+ |u(ξ, ζ)|2u(ξ, ζ) = 0, (2.7)

where ζ = z/LD, ξ =
√

2x/w0 and LD = kw2
0/2 is the diffraction length of a

reference Gaussian beam with waist w0. The nonparaxiality parameter

κ =
1

(kw0)2
=

1
4π2

(
λ

w0

)2

, (2.8)

is proportional to the square inverse of the ratio of the beam waist to the optical
wavelength λ = λ0/n0 of a linear optical signal in the medium. The normalized
equations (2.7) can be alternatively obtained from (2.5) using the characteristic
length scale of the nonlinear effects LNL = λ0/(2πn2I), instead of the diffrac-
tion length LD as a reference. Using the scaling ζ = z/LNL, (2.7) and (2.10) are
obtained from (2.5). The nonparaxiality parameter in this alternative (equivalenta)
derivation is proportional to the ratio of the nonlinear contribution to the dielectric
permittivity to its linear part

κ =
1
4

2n0n2I

n2
0

=
1
4

n2
NL

n2
0

. (2.9)

aIn the first derivation, which leads to (2.8), the soliton width is used to normalize the propagation
coordinate, LD . The reference peak amplitude of the solution is then set such that LNL = LD .
In the second derivation that yields (2.9) the z coordinate is first scaled with LNL and the nor-
malization of the transverse coordinate is then chosen so LD = LNL. Therefore, both scalings, as
well as conditions (2.8) and (2.9), are fully equivalent.
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The envelope equation (2.7) is more convenient for the comparison of full
Helmholtz results with those obtained from the paraxial NLS equation that is
obtained from (2.7) when the first term κ∂ζζu is neglected. Rescaling the z coor-
dinate according to the x coordinate and reintroducing the fast reference phase
permits to recover a scaled version of the NLH equation8

∂2U(ξ, ζ)
∂ζ2

+
∂2U(ξ, ζ)

∂ξ2
+

1
2κ

U + 2|U(ξ, ζ)|2U(ξ, ζ) = 0. (2.10)

The exact Kerr bright Helmholtz soliton4,6 in this frame has the expression8

U(ξ, ζ) = ηsech [η (ξ cos θ + ζ sin θ)] exp

[
i

√
1 + 2κη2

2κ
(−ξ sin θ + ζ cos θ)

]
, (2.11)

where the rotational invariance4,6 of the NLH equation solutions is evident.
There is no approximation in going from Eq. (2.5) to (2.7), and both equations

are fully equivalent.

3. The 2D TLM Shunt Model

In the 2D shunt-connected TLM formulation a periodic mesh of transmission line
sections is deployed over the propagation plane, as shown in Fig. 1. A ∆l × ∆l

unit cell of this periodic array is highlighted in the upper left corner of this figure.
The electromagnetic properties of each transmission line section are defined by
its characteristic impedance Z0 and propagation velocity u which are related to,
but distinct from, the wave impedance and velocity in the 2D medium that is
being modelled. These magnitudes are equivalently defined by the capacitance and
inductance per unit length of the transmission line, Cd and Ld, respectively.

This setup provides a frame that supports the propagation of transmission line
voltage and current waves (defined in Fig. 2) that model the electromagnetic mag-
nitudes in the original problem. The correspondence between the transmission line
fields (voltages at the mesh nodes and the currents in the transmission line sections)
and the electric and magnetic field intensities, respectively, is21

Ey ↔ −Vy

∆l
, (3.1)

Hx ↔ Iz

∆l
and (3.2)

Hz ↔ − Ix

∆l
. (3.3)

Using the equivalent lumped circuit element representation of the transmission
line sections of length ∆l at a node and the equivalences (3.3), it is immediate to
derive the 2D Maxwell equations (2.1)–(2.3) from the TLM model19,21 in the limit
∆l → 0.
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Fig. 1. Schematic illustration of the 2D shunt-connected TLM mesh.

Fig. 2. Schematic representation of a shunt TLM node with a capacitive stub.

A change in the linear refractive index can be modelled through a capacitive
stub. The contribution of the polarization current in the propagation medium to
the total displacement current is represented by the current at the input of a short
open-ended transmission line section with characteristic impedance ZC , as shown
in Fig. 2. The length of the stub and its propagation velocity must be chosen in
such a way that the synchronism of all the signals in the TLM mesh is preserved.
The full correspondence with the medium parameters is, then, given by

µ0 ↔ Z0
∆t

∆l
, (3.4)

ε0n
2
0 ↔ 2∆t

Z0∆l

(
1 +

Z0

4ZC

)
. (3.5)

Figure 2 depicts a node in the TLM mesh, where five transmission line sec-
tions are shunt connected. At time t = k∆t, V

(k)
i,l is the wave propagating along

transmission line l towards the node. The five incident components are then scat-
tered producing the reflected components V

(k)
r,l which, at the next iteration of the
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Fig. 3. Equivalent circuit for the TLM shunt node.

algorithm, become the incident components at adjacent nodes after a transmission
delay ∆t. The scattered components can be calculated from the incident compo-
nents at each line and the node voltage V k at t = k∆t which is readily obtained
from the node equivalent circuit shown in Fig. 3. The resulting scattering matrix is

S =
1
Ŷ




2 − Ŷ 2 2 2 2ŶC

2 2 − Ŷ 2 2 2ŶC

2 2 2 − Ŷ 2 2ŶC

2 2 2 2 − Ŷ 2ŶC

2 2 2 2 2ŶC − Ŷ


 , (3.6)

where ŶC = Z0/ZC and Ŷ = 4 + ŶC .
A nonlinear contribution to the displacement current during the propagation

can be incorporated by loading the TLM node with a nonlinear capacitive element.
Since the early works of Johns and O’Brien,29 many proposals for the incorporation
of nonlinear reactive elements in TLM models using either link or stub transmission
line sections have been put forward.30–35 In Ref. 30, several early approaches are
analyzed and one stub model with impedance varying over the time step is proposed.
In this scheme,30 the characteristic impedance of the capacitive stub modelling the
nonlinear dielectric susceptance is itself a nonlinear function of the signal propagat-
ing along it. This configuration permits the conservation of the charge and energy
in the nonlinear TLM formulation. In the approach introduced in Ref. 35, a change
in the refractive index is modelled by the sudden switch of a capacitive stub with
no initial incident voltage.

Most nonlinear TLM models result in implicit schemes that require to solve
a nonlinear equation at each node for each time instant. This task can be effi-
ciently accomplished by the use of the Newton–Raphson algorithm which typically
converges in a very small number of iterations or using the direct solution of the
third-order equation. Several schemes have been tested by us rendering essentially
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equivalent results. For the numerical simulations, we have used an efficient paral-
lel implementation of the algorithm using the parallel virtual machine (PVM) as
message passing library.

4. Results and Discussion

The nonparaxiality parameter κ, as given by (2.8), becomes larger as the width of
the exact Helmholtz soliton (2.11) solution approaches the size of the wavelength.
Such a decrease of the soliton width, in turn, requires a stronger relative contribu-
tion of the nonlinear self-induced component to the total refractive index that can
be read from (2.9). In this regime of strong nonlinearity, the nonlinear parametric
processes in the medium are significantly enhanced. Even though the propagation
of a signal in the TLM mesh is subject to some (normal) dispersion of numerical
origin,19,21 this dispersion can be very small for very fine spatial discretizations.
This means that the conversion to the third harmonic through four wave mixing
(FWM) effects in the presence of a instantaneous nonlinearity n2

NL = αEz(x, z, t)2

can be very strong. Third harmonic generation (THG) may act as a perturbation
that hinders an accurate representation of the Helmholtz model equation using the
time-domain TLM algorithm in the CW regime.

This effect is illustrated in Fig. 4 for a κ = 0.01 soliton that corresponds to a
FWHM width of wFWHM � 2λ. In this and all the following figures the x and z axes
have equal scalings to permit an easy identification of the beam sizes in terms of the
optical wavelength. Figure 4(a) shows the evolution of a linearly diffracting beam
with a “sech” shape at its waist. Figure 4(b) shows the fundamental frequency
component of a sech beam in a nonlinear medium with the exact input power
required for the generation of an exact soliton. The generation of the third harmonic
signal, shown in Fig. 4(c), acts as a loss mechanism that arrests the formation of
the soliton. Similarly, FWM effects can be noticeable even for wider beams if the
total propagation distance is sufficiently large.

THG can be controlled to some extent if the numerical dispersion is enhanced
by increasing the step size.19,21 Also, one could adjust the numerical frequency cut-
off due to the discrete TLM mesh to completely avoid the FWM up-conversion.
But any of these strategies assumes a trade-off between the control of the per-
turbation due to the THG and the numerical accuracy of the calculations. Better
strategies can be based on the intentional modelling of typical physical propaga-
tion effects that quench THG. For instance, an arbitrary dispersive response can
be intentionally introduced in the model.33 Also, the perturbation due to FWM
effects can be avoided assuming a slow nonlinear response, such that the nonlinear
refractive index responds to the average optical field n2

NL = α′〈Ez(x, z, t)2〉, where
the brackets denote time averaging and only the contribution from the field at the
fundamental frequency ω0 is assumed.b The continuous wave solution described by

bThe assumption n2
NL = 2n0n2|Ẽ|2 used in the derivation of the NLH equation corresponds,

actually, to n2
NL = α′〈Ez(x, z, t)2〉 and not to n2

NL = αEz(x, z, t)2.
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(a) (b)

(c) (d)

Fig. 4. (a) Linear propagation of a “sech” (at its waist) beam of FWHM width wFWHM � 2 λ
(κ = 0.01). (b) Field component at the fundamental frequency ω0 when the input condition
corresponds to the exact soliton (2.11) and an instantaneous nonlinearity is assumed. (c) Third
harmonic component. (d) Exact soliton generated in a slow response medium.

the nonlinear Helmholtz equation is then obtained through a transient that depends
on the medium response time that can be used as a control parameter. Figure 4(d)
shows the exact soliton solution obtained once the THG effect has been eliminated.c

4.1. Interfaces

The interaction of optical solitons with nonlinear interfaces is a quintessential prob-
lem of the Helmholtz nonparaxial type with a fruitful recent progress abundant in
new results.15–18 The 2D TLM method can extend the numerical surveys to new
problems with large variations in the linear and/or nonlinear refractive indexes
across the interface which are adequately described by the Helmholtz theory but
are out of reach of the NBPM method.7

Figure 5 shows the behavior of a Helmholtz soliton with κ = 0.001 corresponding
to wFWHM � 6 λ impinging on the planar boundary separating two nonlinear media
with an incident angle of θ = 45◦. The nonlinear susceptibility χ

(3)
NL is identical

cNotice that this power is different for the instantaneous and slow response cases when α = α′.
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Fig. 5. A κ = 0.001 soliton (wFWHM � 6 λ) impinging at 45◦ on the plane boundary separating
two nonlinear media with (a) ∆nL = 0.5 and (b) ∆nL = 1 and (c) ∆nL = 1.5. The nonlinear

susceptibility χ
(3)
NL has equal values at both sides of the interface.

at both sides of the discontinuity and the step in the linear refractive index is
∆nL = 0.5 in Fig. 5(a), ∆nL = 1 in Fig. 5(b) and ∆nL = 2 in Fig. 5(c).

4.2. Subwavelength solitons

Electromagnetic propagation in 2D media can be handled using Maxwell equations
but it is not possible for the exact physical implementation of a 2D propagation
setup. Typically, quasi-two-dimensionality is subject to certain approximations that
may fail out of certain parameter regions. Here, we are simply concerned with the
relation between the 2D Maxwell equations and the nonlinear scalar Helmholtz
equation and its soliton solutions regardless of their possible physical meaning in
extreme parameter regimes.

As it was mentioned before, high-intensity subwavelength solitons are proper
solutions of the scalar wave equation and were discussed in Ref. 22. In Ref. 23 it

1250031-10



November 9, 2012 11:1 WSPC/S0218-8635 145-JNOPM 1250031

Time Domain Analysis of Helmholtz Soliton Propagation

Fig. 6. A subwavelength spatial soliton with κ = 0.1, wFWHM � 0.6 λ.

was argued that such solitons are intrinsically unstable due to the elliptic nature
of the evolution equation. In fact, the instability described in Ref. 23 is a purely
numerical issue and not a physical effect. This numerical instability was studied
in detail in Ref. 7, where it is adequately removed from the proposed numerical
propagation scheme.

The propagation of a subwavelength spatial soliton as a solution of the time-
domain Maxwell equations using the TLM method far beyond the stability limit
predicted in Ref. 23 is shown in Fig. 6. The nonparaxiality parameter is κ = 0.1
that corresponds to a beam width of wFWHM = 0.6 λ. Even though subwavelength
solitons are free from the intrinsic instability described in Ref. 23, the robustness
of these solutions of the nonlinear Helmholtz equation will be the subject of future
investigations using the TLM method.

5. Conclusion

We have used a parallel implementation of a nonlinear shunt 2D TLM method
for the analysis of the propagation properties of the soliton solutions of the scalar
nonlinear Helmholtz equation. We have shown that this scheme permits to extend
previous numerical studies to parameter regions that involve relative changes of
the (linear or nonlinear) refractive index of O(1). Two particular cases have been
considered: spatial solitons at planar interfaces with large contrast in the linear
refractive index and the propagation of subwavelength Helmholtz solitons. We have
shown that relevant perturbation effects may be originated from nonlinear paramet-
ric processes taking place in the computational mesh and how these disturbances
can be eliminated.
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