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We predict, for the first time to our knowledge, that purely-absorptive nonlinearity can
support spontaneous spatial fractal pattern formation. A passive optical ring cavity with
a thin slice of saturable absorber is analyzed. Linear stability analysis yields threshold
curves for Turing (static) instabilities with features proposed as characteristics of poten-
tial fractal pattern formation. Numerical simulations of the fully-nonlinear dynamics,
with both one and two transverse dimensions, confirm theoretical predictions.
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Spontaneous pattern formation appears in a wide range of disciplines, includ-
ing physics, chemistry, biology, and engineering.1,2 The universal phenomena of
symmetry-breaking and self-organization often conspire to drive the emergence of
one of the two generic spatial structures: (i) simple Turing-instability patterns with
a single dominant scalelength (e.g. hexagons, squares, stripes, and rings); (ii) com-
plex patterns with proportional levels of detail spanning decades of scale (fractals,
i.e., inherently scaleless objects).

Previously, a connection was sought between these two apparently exclusive sig-
natures of complexity.3 A characteristic was proposed as capable of predicting the
fractal-generating capacity of wave-based nonlinear systems: systems whose static
Turing instability threshold spectrum exhibit a large number of comparable fre-
quency minima are potentially capable of generating spontaneous fractal structures.
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This type of pattern formation was confirmed in a simple dispersive system: the
classic diffusive-Kerr slice with a single feedback mirror.2,4 In this rapid Communi-
cation, we predict the first spontaneous spatial fractals in a purely-absorptive non-
linear ring cavity. Such a choice of system enables us to test, simultaneously, the
independence of the proposed fractal-generating mechanism with respect to both
the nature of the nonlinearity and the particulars of the experimental configuration
(e.g. single feedback-mirror, ring cavity, etc.).

The linear fractals found in the transverse eigenmodes of some unstable cav-
ity lasers are formed through the interplay between diffraction and successive
round-trip magnifications.5–7 The multiscale origin of those patterns lies in a lin-
ear superposition of images, each of which has a larger scalelength than the pre-
ceding one. Here, the cascade to fractality is driven solely by intrinsic nonlinear
dynamics. Above the Turing-instability thresholds, nonlinear cascades contribute
to the excitation of higher spatial frequencies, leading to smaller-scale details
in the pattern. Such nonlinear fractals are truly spontaneous spatial structures
(emerging in homogeneous systems) and physically distinct from “soliton frac-
tals”, where each new scalelength is introduced by an individual, abrupt material
inhomogeneity.8

Over recent decades, nonlinear ring cavities have provided a paradigm for study-
ing optical pattern formation. Many analyses have simplified the full spatiotemporal
dynamics by adopting the mean-field limit. However, Turing-instability threshold
spectra obtained from mean-field models typically possess only a single minimum,
and thereby preclude predictions of cascades-to-fractality. Allowing for light propa-
gation effects reveals possibilities of multiple emergent spatial frequencies.9,10 The
generality of the proposed fractal-generating signature3 is tested here by examining
a configuration (see Fig. 1) that is quite different from that in Ref. 3. We consider a
thin slice of saturable absorber with a near-negligible width l (thus avoiding detailed
nonparaxial treatment of small-scale field structure). We further assume that the
medium polarization relaxes sufficiently rapidly (compared to the dynamics of the
population inversion w and the cavity transit time tR) that it can be adiabatically
eliminated. When potential diffusion of w is accounted for, the longitudinal (z)

Fig. 1. (Color online) Schematic diagram of the nonlinear ring cavity geometry with a spatial
frequency filter F (K,KC).
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evolution of the electric field envelope E and medium dynamics are governed by

∂E

∂z
=

(α0

2

) Ew

1 + i∆
, (1a)

T1
∂w

∂t
− l2D∇2

⊥w + (1 + w) = − T1T2

1 + ∆2
|E|2w, (1b)

where ∇2
⊥ is a transverse Laplacian, T1 and T2 � T1 are relaxation times for w and

the polarization, respectively, lD is a diffusion length, α0 is an absorption coefficient,
and ∆ is the detuning between pump and atomic resonance frequencies. The system
can be either purely absorptive (∆ = 0) or purely dispersive (|∆|� 1).

Denoting the Fourier transform of E at the output face of the slice by Ẽ(K, l, t),
model (1) is supplemented by a ring-cavity boundary condition9:

Ẽ(K, 0, t) = aδ(K) + R1/2 exp(iφ0)F (K, KC) exp[−iθ(K2)]Ẽ(K, l, t− tR), (2)

where K is transverse wavevector, a is intracavity plane-wave pump amplitude,
δ(K) is a Dirac delta function, R is the intensity reflectivity of the coupling mirror2

(other mirrors are assumed lossless) and φ0 is cavity mistuning. The phase factor
θ(K2) = 2σK2/[1 + (1 − K2/k2

0)1/2] allows for Helmholtz diffraction11 in the free-
space path, where σ ≡ L/2k0 and k0 is the carrier wavenumber. The function
F (K, KC) represents a spatial filter whose effect, in combination with diffraction,
provides a continuously-variable cut-off frequency KC :

F (K, KC) exp(−iθ) = exp

[
−iσ

2K2

1 +
√

1 − (K/KC)2

]
. (3)

When letting k0 → ∞, the paraxial propagation factor θ(K2) � σK2 is recovered
so that, when F (K, KC) = 1, Eq. (2) becomes the classic (paraxial) boundary
condition.9

Linear stability analysis has been performed on the steady-state, transversely-
homogeneous solutions (E0, w0) of system (1), subject to the paraxial boundary
condition.9 Perturbations are assumed proportional to exp(iK · x +λt), where
λ ≡ Λ − iΩ, Λ is the growth rate and Ω is the Hopf frequency. The threshold
for spontaneous static patterns is found when λ = 0, yielding a condition on the
intracavity intensity Ith ≡ |E0|2:

δ + T1T2Ith

δ
+ l2DK2 =

T1T2Ithα0l
√

r

δ(1 + T1T2Ith)
cos Γth + ∆ sin Γth −√

r

1 + r − 2
√

r cos Γth
, (4)

where δ ≡ 1 + ∆2, Γth ≡ φ0 + α0l∆/(δ + T1T2Ith)− σK2 and r ≡ R exp[−α0l/(δ +
T1T2Ith)]. Threshold condition (4) divides the (Ith, K) plane into a large num-
ber of islands (see Fig. 2). With increasing K, the width and separation of the
islands decrease while the minimum (maximum) thresholds increase (decrease)
smoothly. Sufficiently small lD allows the coexistence of large number of comparable
instability islands. This multiscale characteristic may indicate spontaneous fractal
patterns.3
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(a) (b)

Fig. 2. (Color online) Multi-Turing threshold instability spectra for the purely-absorptive
(∆ = 0) ring-cavity system (1) with (a) a finite level of diffusion (lD = 0.2) and (b) no diffusion
(lD = 0). Other parameters are set to: a = 19.0, φ0 = π/4, R = 0.9, σ = 1.0, α0l = 10.0, T1 = 1.0
and T2 = T1/100.

In the absence of diffusion, system (1) has a global instability minimum [see
Fig. 2(b)]. When the pump intensity just exceeds threshold, all spatial frequen-
cies defined by this minimum have the same growth rate. One then expects that
the resultant pattern in the one-dimensional transverse plane will be an extremely
complicated area-filling pattern with fractal dimension 2. To test this conjecture,
the stationary state of system (1) is initialized above threshold with a 0.1% level
of background noise (added to accelerate the pattern formation process). For sim-
ple pattern formation, the filter KC is set so that only those waves within the first
instability island may propagate freely around the cavity (spectral components with
K > KC are attenuated). The static Turing intensity pattern I(x) ≡ |E(x)|2 that
eventually emerges has a single well-defined scale length, and its corresponding
power spectrum P (K) contains a dominant peak plus a set of weaker harmonics
[see Fig. 3(a)]. When the filter is removed (by setting KC = k0 = 11,200), waves
associated with many more instability minima may propagate and interact. Intrin-
sic nonlinear dynamics (e.g. harmonic generation and four-wave mixing cascades)
then lead to rapid growth at the high-K end of the power spectrum [this process
is illustrated in Figs. 3(b) and 3(c)]. After a sufficient number of transits, all spa-
tial frequencies are present in the pattern I(x) with roughly the same strength,
resulting in an area-filling fractal (with dimension 2) that possess comparable lev-
els of structure down to spatial scales at the optical wavelength, i.e., ∼ 2π/k0 [see
Fig. 3(d)].

The roughness-length dimension Drl of the fractal pattern in Fig. 3(d) can be
calculated12 from Drl = 2−d ln〈S(W )〉/d(ln W ). For an interval W of a curve I(x),
the root-mean-square (RMS) roughness S(W ) is the standard deviation of the first
differences, ∆I, of the values of I within the interval, ∆I(x) ≡ I(x)−I(x−∆x), and
∆x is the constant sampling interval of the dataset representing the curve. Here,
〈S(W )〉 denotes the average value of S(W ) over a number of intervals. Figure 4
shows the RMS roughness for the curve in Fig. 3(d); the main portion of the plot
has a slope of zero, and thus Drl = 2. This result is in full agreement with predictions
from the linear stability analysis. Although Drl is an integer, the pattern itself is still
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(a)

(b)

(c)

(d)

Fig. 3. (Color online) Evolution of one-dimensional pattern (first column) and its corresponding
power spectrum (second column) in a purely absorptive cavity containing a thin slice of material.
Other parameters are the same as in Fig. 2(b). (a) Static pattern (formed when the filter is set to
KC = 1.0) when the filter is removed at time t = 0. Subsequent patterns after the filter is removed
(KC = k0 = 11,200) shown for times: (b) t = 500tR , (c) t = 1,000tR and (d) t = 3,000tR.

a fractal because its fractal dimension (i.e., Drl = 2) is larger than its topological
dimension [i.e., 1 for the pattern in Fig. 3(d)].

One may now consider spontaneous pattern formation when two transverse
directions are present. The evolution of the perturbed stationary state towards
a simple (static) pattern [in this case, a hexagonal array] is shown in Fig. 5. The
hexagon patterns are reminiscent of the classic patterns observed by Grynberg
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Fig. 4. (Color online) Root-mean-square roughness of the real-space pattern I(x) shown in
Fig. 3(d).

(a) (b)

(c) (d)

Fig. 5. (Color online) Formation of a simple Turing (hexagon) pattern in purely absorptive cavity
with two transverse dimensions and where the filter has been set to KC = 1.0. All other parameters
are the same as those in Fig. 2(b). Patterns are shown for times: (a) t = tR, (b) t = 280tR ,
(c) t = 360tR and (d) t = 900tR .
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(a) (b)

(c) (d)

Fig. 6. (Color online) Evolution of the hexagonal array from Fig. 5(d) toward a fractal. (a) Initial
simple hexagonal pattern at time-zero (when the filter is removed by setting KC = k0 = 90.0).
Patterns are shown for times: (b) t = 270tR , (c) t = 350tR and (d) t = 860tR .

et al.13 Once this static pattern has been reached, the filter is removed by setting
KC = k0 = 90 and subsequent evolution is monitored. Intermediate patterns form
that resemble the superlattice structures observed in optical feedback experiments
with Kerr-like nonlinearities.14,15 Our simulated patterns then subsequently develop
an increasing level of fine structure (see Fig. 6). However, accurate 2D simulations of
fractal (as opposed to simple) patterns are exceptionally resource-hungry: computer
memory limitations restrict k0 to relatively small values compared to 1D computa-
tionsa and prevent the final pattern reaching a truly volume-filling character (that
should have dimension 3).

aTo maintain high numerical accuracy, k0 must be less than one half of the maximum spatial
frequency that can be represented on the computational grid. In this way, one avoids various
numerical artefacts, such as aliasing, that would otherwise invalidate our results.
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In conclusion, it has been shown that a purely-absorptive nonlinear system can
give rise to spontaneous spatial fractal patterns. Linear analysis reveals Turing-
instability threshold spectra with characteristics suggesting cascades-to-fractality.
Simulations demonstrate the generality of this proposed fractal-generating sig-
nature,3 i.e., independence with respect to both system nonlinearity and the
details of experimental geometry (e.g. single feedback-mirror or ring cavity).
We expect other photonic systems with similar Turing threshold spectra to be
capable of generating spontaneous fractal patterns. Any experiment designed to
observe spontaneous spatial optical fractals will inevitably involve some high-
frequency cut-off (e.g. intrinsic filtering due to finite beam-size considerations,
while simulations presented here and elsewhere3 have considered plane-wave pump-
ing only), and such effects may prevent patterns in the laboratory from reach-
ing their area-filling or volume-filling potential. However, the results reported
in this paper (extending considerations from single-feedback-mirror Kerr con-
figurations to absorptive ring-cavity geometries) support the notion of univer-
sality of the proposed mechanism for predicting a system’s fractal-generating
capacity.
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