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Abstract: The slowly varying envelope approximation (SVEA) and 
the ensuing Galilean boost to a local time frame are near-universal 
features of conventional scalar pulse models.  They have enjoyed 
unbridled longevity in the literature over the past forty years for 
two main reasons.  Firstly, they often provide an adequate 
description of the phenomena being observed.  Secondly, a large 
body of knowledge exists on how to solve the resultant parabolic 
governing equations.  In this Invited presentation, we consider the 
consequences of relaxing both the SVEA and the Galilean boost.  
These two artefacts are tightly connected, and in ways that are not 
always obvious.  We will give a complete overview of our recent 
discoveries concerning a generalized nonlinear Helmholtz equation 
that describes optical pulses in the laboratory reference frame.  
 

I.  INTRODUCTION 
 

It can be safely said that optical soliton pulses are one of the 
most thoroughly investigated and well-understood phenomena 
in nonlinear photonics.  Since the seminal works of Hasegawa 
and Tappert [1], and later the experiments of Mollenauer et al. 
[2], the cornerstone of many investigations has been the 
slowly-varying envelope approximation (SVEA).  The SVEA, 
in combination with a subsequent Galilean boost to a local time 
frame, tends to reduce the complexity of the longitudinal 
(spatial) part of wave operator, with temporal effects (such as 
higher-order dispersion and Raman scattering) left unchanged.  
While this approach has some clear-cut advantages [by 
replacing the elliptic (or hyperbolic) governing equation with a 
parabolic one], there are some physical effects that fall outside 
its remit.  One such effect is spatial dispersion [3], recently 
discussed by Biancalana and Creatore in the context of pulse 
envelopes in semiconductor planar waveguides [4]. 

Here, we report our recent discoveries surrounding a very 
general Helmholtz model of scalar optical pulses.  By 
deploying similar methods to those used over the past ten years 
to study nonlinear beams, we have been able to derive several 
classes of exact analytical soliton solution to a new governing 
equation.  Our results are fundamentally different from those 
already published [4] because of the frame of reference in 
which we analyze the pulses.  They have a simple physical 
interpretation, and some surprising connections to special 
relativity have been uncovered. 

 
II.  HELMHOLTZ PULSE MODEL 

 

We begin by considering a scalar electric field E(t,z) that is 
traveling down the longitudinal axis z of a waveguide,  
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where t is the time coordinate.  Here, A(t,z) is the envelope that 
modulates a carrier wave with optical frequency ω0 and 
propagation constant k0 = n0ω0/c, where n0 is the linear 
refractive index of the core medium at ω0 and c is the vacuum 
speed of light.  The transverse spatial variation of the electric 
field is controlled by the structure of the waveguide itself.  By 
substituting Eq. (1) into the corresponding Maxwell equations 
and Fourier transforming to the temporal frequency domain, it 
can be shown that [5] 
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where Ã ≡ Ã(ω,z) denotes the Fourier transform of the pulse 
envelope.  The parameter k2 that appears in Eq. (2) is the mode 
eigenvalue – it is obtained by solving Maxwell equations for 
the transverse part of the confined field.  The factor (k2 – k0

2) is 
often approximated by 2k0(k – k0), and the remaining linear 
term k ≡ k(ω) is expanded around ω0 according to 
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where k0 ≡ k(ω0), and kj ≡ (∂jk/∂ω j)ω0 for j = 1, 2, 3, …  The 
last term on the right-hand side of Eq. (3) is the nonlinear 
correction to k is taken to be ∆kNL = n2Iω0/c, where n2 is the 
Kerr coefficient and I is the intensity.  The summation in Eq. 
(3) is truncated by assuming that terms beyond j = 2 make only 
a negligible contribution; the two expansion coefficients of 
interest are thus k1 = (∂k/∂ω)ω0 and  k2 = (∂2k/∂ω2)ω0, which 
parameterize the (inverse) group velocity and (inverse) group-
velocity dispersion, respectively.  By Fourier transforming 
back to the time domain, it can be shown that A must satisfy  
 

             
2 2

2
1 22 2

0

1 0
2

A A A Ai k k A A
k z tz t

γ∂ ∂ ∂ ∂ + + − + = ∂ ∂∂ ∂ 
.      (4) 

 
where the coefficient of the nonlinear term is γ = n2/2n0.  At 
this juncture, one should recognize that the double-z derivative, 
∂2A/∂z2, appears naturally in the governing equation [5].  It is 
this term that is routinely neglected in analyses of pulse 
propagation phenomena.   

Recently, it has been shown for the first time that spatial 
dispersion in some semiconductor materials can provide a 
second contribution to the coefficient of ∂2A/∂z2 [4].  This 
field-exciton coupling augments the propagation contribution 
1/2k0 to yield a lumped coefficient, 
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Here, Γ ≡ ħ/2Mx

*, Mx
* is the effective exciton mass,    is a 

resonant frequency, ∆ is a dimensionless parameter related to 
the oscillator strength for the coherent exciton-photon 
interaction, and δω is a frequency detuning).  A salient point is 
that the coefficient of ∂2A/∂z2 can, in principle, become 
negative when Mx

* < 0 [4]. 
    After rescaling, the following governing equation for the 
dimensionless envelope u may be derived: 
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The normalized space and time coordinates are ζ = z/L and τ = 
t/tp, respectively, where tp is the duration of a reference pulse 
and L = tp

2/|k2|.  The sign of the group velocity dispersion is 
flagged by s = ±1 = –sgn(k2) (+1 for anomalous; –1 for 
normal), and α ≡ k1tp/|k2|.  The spatial dispersion parameter is κ 
= κ0 + D, where κ0 ≡ 1/2k0L = c|k2|/2n0ω0tp

2 and D ≡ 
n0Γ∆ω0/2δω2cL = |k2|n0Γ∆ω0/2δω2ctp

2.  Finally, u = A/A0, 
where A0 = (γL)–1/2 = (2n0|k2|/n2tp

2)1/2. 
 

III. MODELS IN THE LOCAL TIME FRAME 
 

When considering problems involving pulse propagation, one 
typically follows a prescribed route to get from the more 
general nonlinear-Helmholtz governing equation (6) to the 
more straightforward nonlinear-Schrödinger (NLS) model.  
Firstly, one typically invokes the SVEA by arguing that the 
term in ∂2u/∂ζ2 is small.  A Galilean boost to a frame moving at 
the group velocity 1/α is then implemented by defining  
 

          locτ τ αζ= −      and     locζ ζ= .        (7a,b) 
 
The coordinates (τloc, ζloc) are typically referred to as the “local 
time frame”.  They define a unique frame of reference in which 
a pulse centered on the carrier frequency ω0 is at rest.  In this 
rest frame, the field u satisfies the familiar NLS equation with a 
cubic nonlinearity, 
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for which many different types of solution are known. 

The natural question to ask is, “what happens if one keeps 
the ∂2u/∂ζ2 term in Eq. (6) when implementing the Galilean 
boost?”  In that case, the governing equation takes on a cross-
derivative operator: 
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To proceed, one might, for instance, consider only those 
families of solutions where κα2 << O(1), which enables the 
coefficient of the temporal dispersion term to be simply s/2.  
One could also present a case, based on order-of-magnitude 
considerations, for omitting the cross-derivative term.  In so 
doing, one ends up with 
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Biancalana and Creatore have recently analysed model (10) 
[4], which is a temporal analogue of the well-known spatial 
nonlinear Helmholtz equation [6,7].  They performed a linear 
stability analysis [8] of its continuous-wave solutions, and 
derived exact analytical bright and dark solitons.  The work of 
Biancalana and Creatore [4] is particularly important since it 
appears to be the first inclusion of Helmholtz-type effects in 
scalar pulse modelling.   

 
IV. THE LABORATORY FRAME 

 

Despite the excellent progress made with model (10), the above 
approximations to eliminate inconvenient terms is not always 
going to be a fully satisfactory approach [4].  For instance, the 
mapping between normalized and dimensional quantities is no 
longer exact.  With this in mind, it is instructive to compare 
how the mathematical structure of the two simplified models 
differ from the envelope equation in the laboratory frame – Eq. 
(8) drops two terms (iα∂u/∂τ and κ∂2u/∂ζ2), while Eq. (10) 
drops only a single term (iα∂u/∂τ).  Importantly, both 
simplified models admit exact analytical solutions, and this is 
undoubtedly one of the reasons for their success. 

The nub of the problem is that if one wishes to keep the 
κ∂2u/∂ζ2 term (which is essential, for instance, when describing 
spatial dispersion [4]), then Galilean boost (7) results in a local 
governing equation that is more complicated than the original 
equation!  So at the outset, the conventional coordinate 
transformation serves no useful purpose.  This leaves one with 
a fairly stark choice. One could either work with the 
approximate models (8) and (10), with all their inherent 
advantages and disadvantages; or one can abandon the near-
universal Galilean transformation and remain in the laboratory 
frame. 

It turns out that, if the latter option is chosen, a huge amount 
of progress can be made.  So much, in fact, that it is surprising 
that analyses of optical pulses in the laboratory frame (i.e., in 
the frame where experiments are always performed and 
measurements made) seem to be almost completely absent 
from the literature.  Rather than seeing how many terms can be 
dropped from Eq. (6), one can instead approach the problem in 
the reverse sense: Eq. (6) contains just one extra term 
compared to the spatial Helmholtz equation.  This term even 
has a particularly tractable form – a linear operator iα∂u/∂τ 
(i.e., there are no higher-order or cross-derivatives, and no 
complicated nonlinearities to consider).  Hence, one expects to 
be able to deploy the same mathematical methods [6–8] and 
computational [9] tools that have been used extensively over 
the past decade to study Helmholtz spatial solitons. 

0ω



 
Fig. 1.  Top: propagation of an exact bright soliton of Eq. (6).  

Bottom: typical self-reshaping oscillations for a perturbed 
bright soliton with κ < 0. 

 
V. HELMHOLTZ SOLITON PULSES 

 

In this presentation, we will give a comprehensive overview of 
our investigations into Eq. (6).  This will include a linear 
stability analysis of the continuous-wave solutions, and 
establishing where those solutions are modulationally stable 
against both long- and short-wave periodic perturbations. 

Exact analytical bright and dark soliton solutions will also be 
reported, and their space-time geometry considered in detail.  
New parameter regimes will be considered that have no 
counterpart in the spatial domain – namely, κ < 0 (in the spatial 
domain, κ is the nonparaxial parameter, which must be positive 
[4,6,7]).  A wide range of generic features will also be 
identified.  Crucially, the properties of these new Helmholtz 
temporal solitons are found to depend on the sign of the 
product sκ, rather than sgn(s) or sgn(κ) separately. 

One of the key results – and also one of the most interesting 
– is the velocity combination rule for Helmholtz solitons.  This 
law, which is geometric in nature, is strongly reminiscent of the 
way velocities add together in relativistic particle mechanics.  
In fact, when sgn(sκ) = –1, there is a one-to-one mapping with 
special relativity theory.  Deeper insight can be gained by 
considering the transformation laws for Eq. (6), which show 
that the velocity combination rule is an intrinsic property of the 
model itself, rather than a property of particular (e.g., soliton) 
solutions. 

Analysis has also uncovered why the Galilean transformation 
(7) is inherently incompatible with the Helmholtz governing 
equation (6).  In conventional pulse theory, there exists a single 

unique reference frame where all pulses (centred on the carrier 
frequency ω0) are stationary.  No such frame exists for the 
solutions of Eq. (6) because the transformation to the rest 
frame of any pulse is parameterized by the characteristics (e.g., 
the intensity) of the pulse itself.   

Finally, we will provide supporting evidence of the stability 
of the new soliton pulses that has been obtained from extensive 
computer simulations [9].  For example, bright solitons 
subjected to an initial perturbation to their local temporal shape 
tend to exhibit monotonically-vanishing oscillations, relaxing 
back toward an invariant solution (see figure 1). 

 
VI. CONCLUSION 

 

We have taken the first steps toward understanding nonlinear 
optical pulses from a new perspective by studying their 
behaviour from the laboratory frame.  In the course of our 
work, we have found that this frame is the natural frame from 
which to describe pulses.  Furthermore, the internal 
inconsistencies introduced by the classic Galilean boost (7) can 
be quite subtle (indeed, some of them remained hidden until 
the more general Helmholtz model was investigated).  We have 
discovered, what we believe to be, a compact and elegant 
framework for describing optical pulses.  The framework is 
exact [in the sense that no further approximation beyond Eq. 
(6) is required] and self-consistent.  The existence of bright and 
dark soliton solutions with novel relavitistic characteristics is 
also reported. 
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