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In the last decade theoretical nonlinear optics has developed a new branch through
considering the formation of spatial patterns across the transverse profile of prop-
agating laser beams [1-4]. The challenge of understanding these patterns and
their evolution has meant that full numerical simulation of the governing non-
linear partial differential equations has, by necessity, formed the backbone of
most investigations. However, reduction of the spatial complexity to competition
between dominant nonlinear structures provides a means to understanding and
quantifying the transient and asymptotic dynamics.

The work undertaken by this Investigation Group at the Study Centre, and
proposed for future work, is an appropriate balance of computational and an-
alytic studies. During the Study Centre, an application for resources on the
Edinburgh Parallel Computing Centre Connection Machine was prepared, and a
pump-priming allocation awarded, to undertake the initial investigations. Since
the possible scope for the examination of 3D and 4D nonlinear structures is very
large, it was necessary to keep considerations as simple, and as general, as pos-
sible. In particular nonlinear systems, robust structures, such as solitons, are
simple exact solutions while in a great number of related systems their charac-
teristics are manifest and can dominate much of the nonlinear evolution. The
framework for this work is based on the 3D and 4D nonlinear Schrödinger equa-
tion (NLS). It is essential to understand how the fundamental structures of such
a universal equation evolve, interact and stabilise before attempting to interpret
their behaviour in systems involving, for example, higher order effects.

The paraxial 4D NLS, which in optics governs the evolution of the electric field
envelope, u, of a beam propagating in the +z direction through a Kerr medium,
can be written as:
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where α defines the scale of the transverse plane (x − y), β is the dispersion
parameter, t is time, and η parametrises the nonlinearity of the medium.

While diffraction fixes α to be positive, the following cases need to be considered:

Anomalous dispersion ⇒ β > 0,
normal dispersion ⇒ β < 0,
self-focusing media ⇒ η > 0,
self-defocusing media ⇒ η < 0.
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Sufficient groundwork has been covered, regarding the 3D NLS, to extract mean-
ingful information from computational explorations of the full 3D-space + 1D-
time problem with the minimum of discretisation. A systematic exploration of
the possible combinations of the above coefficients has revealed a number of cases
which have not previously received attention. Solutions and instabilities for these
novel configurations were discussed by the Investigation Group.

In parts A and B of this report we discuss each case for the paraxial NLS, giving
background where work has previously been performed and proposing investi-
gations where stable solutions are not known. In part C considerations of the
nonparaxial NLS are made and an overview of parts A-C is presented. In part
D analysis that was undertaken, and further application of these considerations,
is outlined. Finally, in part E, considerations are generalised to include optical
elements and cavities.

A) CW beams and transverse effects (β = 0).

i) CW beams in self-focussing media (η = 1).

In a period which now spans three decades, many attempts have been made to un-
derstand the physical processes involved in self-focusing [5-16]. A formulation of
2 dimensional self-trapped beams was presented in 1964 by Chiao et al [6]. It was
proposed that a high intensity beam can modify the host medium and create a
nonlinear waveguide through which the beam can propagate without experiencing
diffractive spreading. It was shown in [6, 7], assuming the paraxial approximation
and allowing for three space dimensions, that this self-trapping phenomenon was
unstable, leading to collapse of the solution to a singularity. This collapse pro-
cess can be halted by a number of other processes such as nonlinear absorption,
saturation of the nonlinearity and material damage. The existence, and relative
importance, of such mechanisms depends on the details of the nonlinear medium
considered. It was not the intention of the Group to dwell on such features. In-
stead, in part C, results and proposed work, pertaining to a mechanism which is
fundamental to the light itself, are discussed.

ii) CW beams in self-defocussing media (η = −1).

In the previous case, η = 1, the Kerr effect can lead to a runaway process which
results in a singularly high beam intensity. For a self-defocusing medium such
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singular behaviour in the intensity does not occur. However, recent research has
shown that, in this case, point singularities in the phase of the beam (optical
vortices) can act as robust nonlinear structures which dominate and characterise
the evolution of the system. Researchers [17-19] have examined whether any 3D
manifestation of the 2D dark soliton solution [20] is possible. However, it has
been found that dark soliton stripe (DSS) solutions, which are 1D phase singu-
larities, break-up into rows of optical vortices when subject to perturbations and
that these new nonlinear waves are more robust [21]. Other interesting results,
concerning the 3D NLS, were the discovery of vortex gas solutions, stabilisation
into regular crystals of rotating vortices and the motion of nonlinear vortices on
diffracting beams [22].
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B) Pulsed beams – the 4D problem (β 6= 0).

i) η = 1, β = 1.

The full 4D problem has recently been considered for a particular set of param-
eters which describe the nonlinear interaction of light and matter (diffraction,
anomalous dispersion and self-focusing nonlinearity on an equal phenomenolog-
ical footings) [23]. In that work a space-time “light bullet” was proposed. The
formal equivalence between temporal dispersion and spatial diffraction permits a
solution which evolves symmetrically in space and time. In comparison with its
3D counterpart, this 4D solution collapses more rapidly to an unphysical singu-
larity.

ii) η = 1, β = −1.

It was reported at the Study Centre that, for normal dispersion, the 4D wavepacket
can avoid catastrophic collapse through splitting into temporally resolved fila-
ments whose individual power is insufficient to support the nonlinear mechanism
of collapse [24].

iii) η = −1, β = 1.

The generalisation of the results outlined in part A ii) to include temporal effects
is expected to lead to completely new space-time structures. Perhaps the most
closely related work to this section of the Report is that which dealt with the
coupling of bright and dark solitons (“symbions”) in the “1+2” NLS including
dispersion [25]. However, in addition to the assumption of no transverse (lateral)
instabilities, in that work, only one sign of group velocity dispersion was con-
sidered. The determination of the stability of the coupling between DSS’s and
dark temporal solitons and the formation, evolution, interactions and emsemble
configurations of fully 4D vortices were discussed at the Centre and proposed as
future work. The details of different initial value problems involving, for example
noise perturbed CW backgrounds and topologically feasible soliton-vortex and
soliton-soliton couplings were also discussed and outlined in presentation during
the Reports period.
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iv) η = −1, β = −1.

In this situation, the possibilies are analogous to those of part B iii) except that
where a single 1D dark soliton is considered, in this case, it is replaced by consid-
eration of a 1D bright soliton profile. Thus, aspects of symbions consisting of a
DSS pattern (or vortex) coupled to a bright temporal soliton were made. For this
type of dispersion, further effects may arise due to a susceptibility of temporally
smooth regions of the field to a modulational instability.

C) Nonparaxial nonlinear optics.

The generalisation of equation (1) to include nonparaxial effects leads to the
consideration of the following evolution equation:
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where Θ is a parameter equivalent to the divergence angle for a Gaussian beam
in linear propagation and naturally reflects the role of the transverse size of the
beam and the tendency for light to travel off-axis in nonlinear propagation.

The central problem with the light bullet solution of [23] is the adoption of the
paraxial approximation in its derivation. The paraxial wave description becomes
invalid as the bullet focuses down to dimensions of the order of an optical wave-
length. Recently, detailed considerations of the collapse process in the framework
of nonparaxial theory have been made. As reported at the Study Centre, it has
been discovered that a new class of symmetric solution exists in this regime [26].
In numerical simulations, an algorithm which allows self-focusing to be noncatas-
trophic is used to solve the nonlinear Helmholtz equation [27]. Analyses and
simulations have shown that a hierarchy of nonparaxial modes can stabilise to
finite size.

Further generalisation of these new results has been proposed within the frame-
work of this investigation group. Simulation and further analysis of families of
nonparaxial light bullet solutions and their interactions and applications is to be
undertaken.

In very recent work, the numerical solution of the full vector Maxwell equations
with a Kerr nonlinearity has been sought [28]. Preliminary investigations have
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attempted to realise solutions which are self-supporting and simulations have in-
dicated the existence of light packets which can propagate in space with little
change in their shape or spectral characteristics. The complexities of the full
vector Maxwell model of nonlinear propagation can be overwhelming, both from
a numerical and an analytical viewpoint. Consequently, results using the full fun-
damental set of equations can be hard to interpret. The two approaches, vector
Maxwell and envelope equations, are complementary and a deeper understanding
of both types of descriptions will be attained once results from the two approaches
can be compared and contrasted.

Intermediate summary.

In addition to a computational exploration of the stability of new 4D structures, it
is proposed that trial solutions, which can capture their evolutionary characteris-
tics, will be sought and used in Lagrangian analysis to derive ordinary differential
equations for the evolution of their characteristic parameters. To conclude parts
A-C, we present the following table in which a brief outline of known, and ex-
pected, 3D and 4D structures is given. The cases for which results are already
published, or for which participants of the investigation group have unpublished
results, are highlighted. As can be seen in this table, there are still quite a num-
ber of cases to be considered.

β η Solutions Paraxial Nonparaxial
0 +1 Optical collapse and modes • •
0 -1 DSS break-up and vortices •
+1 +1 The optical bullet •
+1 -1 Vortices and symbions
-1 +1 Arrest of collapse •
-1 -1 Vortices and symbions

D) Related physical systems – periodic media and gap soli-
tons.

The NLS is known to describe a very wide class of phenomena. In this part we
report on work that was performed, during investigation periods, on a related
physical system, for which the previous considerations of 3D and 4D structures
may also apply. Analysis was undertaken to generalise the existing theory of gap
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solitons in periodic media to include, for the first time, transverse effects.

From Floquet-Bloch theory, the amplitude of a wave propagating in a periodic
medium may experience exponential decay with distance if its frequency lies
within one of the forbidden frequency bands (band gaps) which occur around
the Bragg frequencies [29]. In a nonlinear periodic structure the effect of the
incident light can be to partially close this gap. Thus, if the frequency of the
light is sufficiently close to a band edge, then, in this case, transmission can be
greatly enhanced. Further to this, it has been discovered that a transmission
resonance can also occur for a frequency which is still within the band gap. Such
a resonance has been linked to the formation of a “gap soliton”, which may be a
static envelope along the propagation axis [30]. In homogeneous media, solitons
can arise due to the interplay of nonlinearity and host dispersion. In periodic
media, the resulting band structure can provide this dispersion and underlying
material dispersion is not required.

In [31] it was shown that stationary gap solitons are a particular case and that,
more generally, propagating soliton solutions may also be found. In that work,
the soliton envelope, a(t, z′), was shown to obey a “1+1” NLS.

i
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where ω′′
m and αm are defined in terms of the particular Bloch function, φm, which

is modulated. At the Study Centre, a more general formulism was derived. The
starting point for this analysis was the nonlinear wave equation, for the electric
field, E, which includes diffraction:
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where χ(z) is the periodic susceptibility and P is the polarisation wave. Follow-
ing the multiple scales analysis and procedure outlined in [31], a more general
form of equation (3) was derived. Within this context a future study of the trans-
verse stability of gap solitons and possible higher dimensional structures, such as
soliton-vortex symbions, was proposed.

E) Cavity effects and optical memory devices.
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Investigation of the propagation, stability and interaction characteristics of fun-
damental nonlinear 3D and 4D light structures will determine their potential as
elementary units (self-supporting “optical bits”) in information technologies. It
is also important to extend the above considerations, which deal exclusively with
propagation, to include optical elements, such as mirrors, and thus the steering,
manipulation and storage of such optical information. As a first step, we pro-
pose to study a nonparaxial single feedback mirror system and investigate its
potential for the storage of optical information. Secondly, we propose a novel
coupled-cavity configuration as an optical memory device and the generalisation
of additive pulse modelocking to additive beam modelocking.

i) Nonparaxial single feedback mirror configuration.

The single feedback mirror configuration has been shown to give rise to sponta-
neous hexagonal optical patterns in the transverse plane [32-38]. The character-
istic size of such patterns scales in proportion to the square root of the distance
between the nonlinear medium and the feedback mirror. To exploit the possible
information capacity associated with these transverse patterns, one would like to
make this distance as small as possible. This direction of investigation leads to the
consideration of a nonparaxial generalisation of published results and the analysis
and simulation of a system with 4 dimensions. The 4D equations describe the
propagating light and are coupled to evolution equations for the material vari-
ables [39, 40].

Separately, there is an interest in 2D soliton-like isolated states which correspond
to single points of the hexagon pattern [41, 42]. Where such isolated states exist,
they are bistable and so can be considered for use as pixels. In the nonparaxial
regime these pixels would be of wavelength dimensions. It has been shown that
when the nonlinear medium is a thin layer of two-level quantum systems (its lon-
gitudinal width being less than an optical wavelength) then the single feedback
mirror configuration exhibits (plane-wave) optical bistability [43]. By analogy,
it seems extremely likely that localised states will also exist. One can envisage
implementation of such a system using a quantum-well layer, spacer and a di-
electric stack mirror. Such a configuration offers the prospect of 1 bit per cubic
wavelength storage capacity.

ii) Additive beam modelocking.

Additive pulse modelocking (APM) is a general method for short pulse production
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which is applicable to a wide range of lasers. The pulse shortening mechanism
is similar to that of a fast saturable absorber and is based on the coherent addi-
tion of self-phase modulated pulses [44, 45]. The required self-phase modulation
typically occurs due to the Kerr effect and, in the first demonstration of APM,
was generated by coupling the main laser cavity to an external section which
contained a length of optical fibre [46]. It was originally believed that this all-
optical feedback scheme required solitonic behaviour, and thus a net negative
group velocity dispersion, in the external section. However, modelling showed
that this is not necessarily the case [47]. A further key observation, in terms of
the proposed investigations here, is that this configuration can operate in both
active and passive modelocking regimes.

The proposal of this group is to investigate the progressive generalisation of the
principles underlying APM to higher dimensions and the inclusion of diffraction.
Firstly, the equivalent scheme (of the same dimension) where dispersion is re-
placed directly with diffraction will be studied to demonstration what we have
called additive beam modelocking. The context of these generalisations will not
be to attempt to modelock the (global) transverse empty-cavity modes of the
main cavity but to enable an arbitrary array of (local) nonlinear spatial filaments
to be sustained within the main cavity. We are thus proposing an alternative
architecture for optical memory devices.

It is envisaged that such coupled-cavities could be constructed as planar sand-
wich structures. Two distinct types of possible device were proposed, both types
supplying a constant “read out” of the information stored. The first was a passive
device, requiring constant CW illumination, for which the information arrays are
coupled in along with the background illumination using a beam splitter. The
second was active, without external illumination, and for which the optical in-
formation is written directly into the main cavity. Generally, attention will be
directed towards the simplest configurations before more involved analysis and
simulation, including, for example, pulsed beams and nonparaxial effects, are
considered
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