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Soliton breakup occurring at the planar boundary separating two Kerr focusing and defocusing media is
analyzed within the framework of the Helmholtz theory where the full angular content of the problem is
preserved. We show that the number of solitons resulting from bright soliton breakup depends on the soliton
angle of incidence, contrary to the predictions of previous paraxial analyses. The generation of multiple gray
solitons resulting from the interaction of a dark soliton at Kerr defocusing interfaces is studied and the main
properties of the output dark soliton pattern are revealed.
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I. INTRODUCTION

The planar boundary separating two dielectric media, where
at least one of them is nonlinear, can produce the breakup
of an incident soliton beam into multiple output solitons.
This effect was numerically observed in the seminal works
on nonlinear interfaces [1,2] for Gaussian beams at the
interface separating linear and nonlinear (Kerr-type) media.
Multilayered structures such as nonlinear waveguides, widely
studied during the 1980s, were also found to emit multisoliton
patterns in the nonlinear substrate [3,4] from a linear guiding
film covered by a linear cladding. These works focused on
linear-nonlinear configurations; in contrast, a planar boundary
separating Kerr-type and linear media has been recently
proposed to induce fission of vector solitons [5] or multisoliton
bound states [6] in the medium where the solitons initially
propagate. In this scenario, the number of solitons resulting
from the reflection of multisoliton bound states has been
reported to possess a strong angular character [6].

The physics of solitons impinging on planar boundaries
separating two Kerr-type media have been studied using the
nonlinear Schrödinger (NLS) equation where the paraxial
approximation is assumed [7,8]. The particlelike approach [8]
has succeeded in explaining a large variety of phenomena
arising at nonlinear interfaces. The limitations of such a model
to address the breakup of a particle into different subparticles
as a result of evolution in a Newtonian potential are overcome
with the application of the inverse scattering technique (IST)
[9] to the interface problem [10].

Nevertheless, most nonlinear phenomena arising at nonlin-
ear interfaces have an angular component which is largely
removed in any NLS-based analysis due to the assumed
paraxial approximation. This limitation is overcome using a
Helmholtz nonparaxial framework [11,12], where a nonlinear
Helmholtz (NLH) equation [13,14] addresses the full evolu-
tion of a broad beam (when compared to the wavelength)
propagating at arbitrary angles in relation to the longitudinal
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axis. Nontrivial Helmholtz corrections have been found in not
only bright Kerr, but also dark Kerr [15], two-component [16],
boundary [17], bistable [18], and algebraic [19] Helmholtz
solitons.

The inherent nonparaxial character of solitons evolving at
planar interfaces is captured in a unified, and generalized,
Snell’s law [20] which addresses the evolution of bright [21]
and dark solitons [22,23] impinging on either focusing or
defocusing Kerr interfaces, respectively. Besides this off-axis
nonparaxiality, on-axis nonparaxiality can also be analyzed in
terms of a scalar wave equation provided dramatic reductions
in soliton width are avoided, i.e., scenarios of strong focusing
are removed from the analysis. Otherwise, the propagation of
narrow or ultranarrow beams, not necessarily at large angles,
would demand a completely different treatment retaining the
vector nature of the fields [24,25]. The nonintegrability of the
NLH equation [26] limits the availability of exact analytical
tools for the analysis of nonlinear propagation problems.
Nevertheless, working out the direct relation between the NLS
equation and on-axis propagation of broad beams under our
angular Helmholtz model permits the extraction of valuable
predictions applicable to the Helmholtz problem [12] even
from the IST results.

In contrast to the large variety of works devoted to bright
soliton splitting, no previous work (to our knowledge) has been
reported for Kerr defocusing interfaces. Initial-value problems,
already proposed to address bright soliton breakup [10], can
also play a similar role in the case of dark solitons. Studied in
the context of both the NLS equation [27,28] and the general
framework of the NLH equation [15], certain initial-value
problems are the origin of multisoliton dark patterns composed
of a fundamental black soliton and pairs of gray solitons
traveling with nonzero transverse velocities. Similar patterns
have been recently reported at the planar boundary separating
two dissimilar Kerr defocusing media within the context of
the Helmholtz theory [23]. Under this framework, a general
law governing black and gray soliton refraction has been
proposed, although the full characterization of the dark soliton
pattern resulting from the interface interaction is still to be
unveiled.
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This paper thus presents an analysis of soliton splitting
occurring at the interface separating two dissimilar Kerr
focusing and defocusing media in the framework of the
Helmholtz theory. We devote Sec. II to a brief review
of the main results obtained in the Helmholtz analysis of
nonlinear interfaces. Section III studies bright soliton split-
ting organized in two subsections, which correspond to the
analysis performed for large and small angles of incidence,
respectively. Our aim is to highlight the essential differences
found in the breakup process when the full angular content
of the problem is preserved, thus overcoming the angular
restrictions embedded in previous paraxial analyses. Section
IV is devoted to studying soliton splitting at defocusing Kerr
interfaces where dark soliton patterns are generated. The
main properties of both the resulting primary black soliton
and the pairs of gray solitons traveling with nonzero trans-
verse velocities are revealed and contrasted with numerical
results. Due to the fundamental role played by numerical
simulations in this work, Sec. V details some aspects of the
parallel implementation of the numerical methods employed.
Finally, Sec. VI summarizes the main conclusions of the
paper.

II. HELMHOLTZ ANALYSIS OF NONLINEAR
INTERFACES

The scheme used in the Helmholtz analysis of nonlinear
interfaces is illustrated in Figs. 1(a) and 1(b) for the cases
of bright and dark solitons, respectively. The white dotted
line represents the planar boundary separating two focusing
(defocusing) Kerr media with total refractive index ni = n0i ±
αiI , i = 1 and 2, respectively. The subscript denotes medium
i, n0i and αi are the linear and nonlinear refractive indices
of the medium, I is the optical intensity, and ± accounts for
focusing (+) or defocusing (−) media. Assuming that medium
2 has a larger nonlinearity than medium 1, a fundamental
soliton propagating in medium 1 undergoes soliton splitting
after entering medium 2. The numerical simulations shown
in Figs. 1(a) and 1(b) are obtained from the full numerical
integration of the NLH equation
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FIG. 1. (Color online) Basic schemes used in this work for Kerr
focusing (a) and defocusing (b) interfaces.

which describes, for a TE optical field, the evolution of
the complex envelope u of a forward-propagating beam. A
derivation from the Helmholtz equation is detailed in Ref. [23].
χ (ξ,ζ ) accounts for the planar boundary which separates
the two media, so it takes values 0 or 1 when (ξ,ζ ) is
in medium 1 or medium 2, respectively. In the particular
case that the boundary is situated at ξ = 0, one obtains the
Heaviside function χ (ξ,ζ ) = H (ξ ). The normalized trans-
verse and longitudinal coordinates are ξ = 21/2x/w0 and
ζ = z/LD , respectively, and w0 is the waist of a reference
Gaussian beam with diffraction length LD = kw2

0/2. κ =
1/k2w2

0 is a nonparaxiality parameter, while � = 1 − n2
02/n2

01
and α = α2/α1 account for the linear and nonlinear refractive
index mismatch at the interface, respectively. Bright and dark
Helmholtz solitons evolving in medium 1 have been fully
described in Refs. [11,12] and Ref. [15], respectively. Exact
solutions for the solitons traveling in medium 2 have been
reported for bright solitons [20]:

u(ξ,ζ ) = η0sech
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where η0 represents the soliton amplitude in medium 1.
For defocusing Kerr media, a soliton in medium 2 is

governed by Ref. [22]

u(ξ,ζ ) = u0(A tanh 
 + jF ) exp

(−jζ

2κ

)

× exp
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where


 = u0Aα1/2 (ξ + W ζ )√
1 + 2κW 2

and W = V − V0

1 + 2κV V0

. (4)

V is a transverse velocity arising from the arbitrary rotation
angle θ of the laboratory coordinates, V = tan(θ )(2κ)−1/2

[11], and W is the net transverse velocity of the dark soliton
resulting from the combination of V and the intrinsic trans-
verse velocity V0 = u0Fα1/2[1 − � − (2 + F 2)2κu2

0α]−1/2.
F = (1 − A2)1/2 is the soliton grayness-contrast parameter
and u0 is the background amplitude. Of course, in the absence
of an interface, � = 0 and α = 1, one recovers from Eqs. (2)
and (3) the expressions for Helmholtz bright [11] and dark [15]
solitons in medium 1.

The angular relationship between solitons propagating in
media 1 and 2 is summarized in a compact and generalized
Snell’s law [23]

γ±n01 cos(θni + θ0i) = n02 cos(θnt + θ0t ), (5)

where θni and θnt represent the net angles of incidence and
refraction, respectively. For the case of dark solitons, Eq. (5)
has to be supplemented with the continuity of the contrast
parameter across the interface [22]. The intrinsic angular
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components of an incident and a refracted gray soliton are
θ0i and θ0t , respectively, so that one has θ0i = θ0t = 0 for
the case of bright and black (F = 0) solitons [23]. γ± is a
nonlinear correction term which assumes different values for
bright γ+ [20] and dark γ− [22] solitons.

III. BRIGHT SOLITON BREAKUP

A. Nonlinear-step interfaces

Our analysis of bright soliton splitting will be restricted to
nonlinear-step interfaces, i.e., interfaces where linear refractive
indices in both media are the same and thus � = 0. Under this
condition, the amount of reflected power at such interfaces
is reduced in relation to � �= 0 interfaces. Otherwise, these
reflections could affect the number of solitons appearing in
medium 2. Second, we consider nonlinear-step interfaces with
α > 1 which is a sufficient condition for the existence of
solitons in medium 2 and establishes the necessary condition
for the splitting of the solitons when crossing the interface.
Therefore, our work is almost restricted to mild on-axis
nonparaxiality where any dramatic reduction in soliton width
resulting from soliton breakup is avoided in order to maintain
the validity of a scalar-based analysis of the problem. Scenarios
of very strong focusing will be removed from our study
provided the Kerr nonlinearity in the second medium verifies
2κη2α � 1.

In contrast to this, the paraxial analysis performed in
Ref. [10] assumes � �= 0. Such interfaces are prone to induce
significant reflection losses at the interface or, even worse,
inhibit soliton formation in medim 2 as a result of total internal
reflection. Working strictly with vanishingly small angles of
incidence, these effects become so relevant that they may even
mask the expected breakup process in medium 2. This explains
the divergence found between theory and numerics and the
absence of numerical data for vanishingly small angles of
incidence [10].

B. Preservation of the power flow

Our theoretical predictions are based on the power flow of
a Helmholtz soliton [11]. The preservation of this magnitude
at both sides of a nonlinear-step interface can be expressed as

2η0

√
1 + 2κη2

0 =
N∑

k=1

2η0k

√
1/α + 2κη2

0k. (6)

The left side of Eq. (6) is the power flow associated with
a soliton of amplitude η0 propagating in medium 1. On the
right-hand side, we have calculated the power flow contributed
by N solitons of amplitudes η0k , arising in the breakup process.
Since the power flow is conserved [11], this sum can be easily
evaluated from Eq. (2) with � = 0 assuming a distance to the
interface that assures a sufficient separation of the emerging
soliton. Taking into account that the power flow is independent
of the soliton angle of propagation, Eq. (6) is valid for all angles
of incidence.

Assuming one works with a Helmholtz type of nonparaxial-
ity where 2ακη2

0 � 1 still holds, Eq. (6) can be approximated

by

η0 ≈ 1√
α

N∑
k=1

η0k. (7)

However, two further simplifications have been assumed in
Eq. (6). First, we have supposed that there are no reflections at
the interface and all incoming power flow passes through the
interface to the second medium. Second, we have considered
that the power flow is totally delivered into the newly generated
beams and no radiation modes appear. Throughout this work,
we will review the conditions where these assumptions are no
longer valid.

An additional relationship to be verified by the solitons
in medium 2 is deduced from Eq. (2) and establishes that
each new soliton must accommodate its shape to the new
propagation conditions, so that a scale factor α1/2 must relate
soliton amplitude and width.

C. Numerical results

Besides these analytical predictions, massive numerical
analyses have been performed. In our simulations, a funda-
mental bright soliton impinges on different nonlinear-step
interfaces at distinct angles of incidence, as illustrated in
Fig. 2. The four images show that the number of solitons in
medium 2 actually depends on the angle of incidence, which
is a remarkable difference from the paraxial predictions [10].

Results for θi = 1◦ (upper row) and θi = 80◦ (bottom row)
and interfaces with α = 9 (left column) and α = 6 (right
column) are combined in Fig. 2. Solitons impinging on an
interface with α = 9 at θi = 1◦ decompose into four solitonlike
beams, while only three are obtained at θi = 80◦. The same
difference is observed in the comparison for the case of α = 6.
Nonparaxial scenarios become more restrictive in the number
of solitons in medium 2 [29]. Not only the number of solitons
but also the amount of reflected power at the interface or
the angle of refraction of the largest amplitude beam are so
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FIG. 2. (Color online) Soliton breakup for θi = 1◦ (upper row)
and θi = 80◦ (bottom row), while the same values of α are used in
each column. In all cases, η0 = 1 and κ = 10−3.
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different that we can distinguish between scenarios associated
with large and small angles of incidence.

D. Large angles of incidence

Our study for large angles of incidence will be illustrated for
the reference value of θi = 80o when eight different nonlinear-
step interfaces are considered. Table I collects the soliton peak
amplitudes η0k and widths ξ−1

0k of the new solitonlike beams
generated in medium 2 when the strength of the nonlinearity
is increased from a factor of 2 to a factor 9 (first row). These
numerical values are used to compute the soliton amplitude-
width ratio ξ−1

0k /η0k and the sum of all numerical amplitudes∑
η0k .
As expected, the number of solitonlike beams in the second

medium depends on α, following a discrete emission process
where each new solitonlike beam is formed once a threshold
energy level value is reached [10]. Second, the numerical
results of Table I confirm that each soliton resulting from soli-
ton breakup accommodates its amplitude-width relationship
ξ−1

0k /η0k to the strength of the nonlinear refractive index α1/2,
as predicted by Eq. (2). Finally, the power flow preservation
shown in Eq. (7) is also verified, as

∑
η0k tends to α1/2.

The tiny differences found between
∑

η0k and α1/2 can
be associated with radiation modes arising in the emission
of multiple solitons. This magnitude has been numerically
computed, comparing the numerical solution given by the
NLH equation and the one composed of N sech-type solitons
of amplitude η0k . Taking into account that the reflected power
flow is negligible for large angles of incidence, as will be
discussed in Sec. III E, the power radiated in the second
medium relative to the incident power is plotted with points
in Fig. 3(a) for θi = 70◦ and θi = 80◦. The black solid line
represents the analytical expression for the normalized radiated
power found in previous paraxial studies [10], Prad(%) ∼
(1 − N/

√
α)2, where N is the number of solitons formed in

the second medium.
The maxima in the radiation pattern are the preludes of

new soliton release and are found very close to the threshold
values of α which give rise to new solitons. These are found for
α1/2 = 1.5 and α1/2 = 2.5 [10]. The newly generated solitons
evolve toward their corresponding stationary states through

TABLE I. Soliton amplitude and width extracted from the
numerical simulations when θi = 80◦, η0 = 1, and κ = 10−3.

α 2 3 4 5 6 7 8 9√
α 1.414 1.732 2 2.373 2.449 2.646 2.828 3

η01 1.283 1.410 1.486 1.537 1.575 1.608 1.630 1.643
η02 0.258 0.495 0.650 0.762 0.827 0.897 0.981
η03 0.064 0.227 0.303∑

η0k 1.283 1.668 1.981 2.187 2.337 2.499 2.754 2.927

ξ−1
01 1.682 2.401 2.972 3.413 3.755 4.136 4.599 4.917

ξ−1
02 0.451 0.986 1.436 1.802 2.129 2.509 2.936

ξ−1
03 0.126 0.631 0.931

ξ−1
01 /η01 1.311 1.703 2.000 2.221 2.384 2.572 2.821 2.993

ξ−1
02 /η02 1.748 1.99 2.210 2.496 2.574 2.797 2.991

ξ−1
03 /η03 1.968 2.779 3.077
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FIG. 3. (Color online) (a) Power radiated in the second medium
relative to the incident power for θi = 70◦ (circles) and θi = 80◦

(diamonds). (b) Soliton peak amplitude for θi = 80◦ when α = 4
(solid blue) and α = 2 (dotted red). In all cases, η0 = 1 and κ = 10−3.

a series of long-lived amplitude oscillations where radiation
is gradually released. This is shown in Fig. 3(b) for the case
of α = 2 which illustrates the evolution of the soliton peak
amplitude along the longitudinal coordinate. On the other
hand, the minima found for α1/2 ∈ Z in Fig. 3(a) reveal that
the power flow supplied to the medium fits perfectly into the
discrete emission pattern associated with the energy levels of
the new medium in the large-angle regime, so that solitons
propagate with negligible changes in shape once they have
crossed the nonlinear interface. Such behavior is captured in
Fig. 3(b) when one observes the amplitude evolution of the
two solitons generated for the case of α = 4.

Figure 3 also reveals that the way radiation is released
for very large angles of incidence fits well the analytical
predictions of previous paraxial studies. Such agreement is
also found when one computes the threshold values of α

which originate an additional soliton, and confirmed when
one compares the soliton peak amplitudes of Table I with
the relationships provided in Ref. [10]. In contrast to other
interface-related phenomena, very good agreement between
Helmholtz theory and paraxial descriptions is found here at
large angles of incidence, since this condition defines a regime
very close to normal incidence where the perturbation induced
by the interface can be dealt with using the predictions of the
paraxial theory [12].

E. Small angles of incidence

Leaving aside the differences found in the number of
solitons generated at the interface, two additional features
are revealed in the plots of Fig. 2 when small and large
angles of incidence are compared. First, the reflections increase
significantly at low angles of incidence. In addition to this,
the interaction between the soliton beam and the interface
spreads over a longer distance, so that the perturbation
effects introduced by the interface have a deeper impact
on soliton decomposition. Both effects make the predictions
of the paraxial theory diverge from our numerical results
collected in Table II, which represent for θi = 1◦ the same
magnitudes as in Table I. Neither the number of solitons nor
their amplitudes correspond to the predictions of the paraxial
theory. Only the ratios ξ−1

0k /η0k tend to α1/2, showing that the
solitons accommodate their amplitude-width relationship to
the predictions of Eq. (2).
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TABLE II. Soliton amplitude and width extracted from the
numerical simulations when θi = 1o, η0 = 1, and κ = 10−3.

α 2 3 4 5 6 7 8 9√
α 1.414 1.732 2 2.373 2.449 2.646 2.828 3

η01 1.211 1.218 1.178 1.128 1.079 1.033 0.992 0.954
η02 0.302 0.518 0.639 0.713 0.760 0.787 0.802
η03 0.221 0.318 0.392 0.453
η04 0.145∑

η0k 1.211 1.520 1.696 1.767 2.013 2.111 2.171 2.354

ξ−1
01 1.687 2.089 2.334 2.509 2.633 2.725 2.797 2.855

ξ−1
02 0.512 1.006 1.214 1.731 1.996 2.216 2.399

ξ−1
03 0.456 0.797 1.046 1.307

ξ−1
04 0.445

ξ−1
01 /η01 1.392 1.715 1.981 2.224 2.440 2.638 2.820 2.992

ξ−1
02 /η02 1.695 1.942 1.900 2.428 2.626 2.816 2.991

ξ−1
03 /η03 2.063 2.506 2.669 2.886

ξ−1
04 /η04 3.069

Our numerical analysis evaluates first the reflected power
flow generated at the interface for different values of α and
angles of incidence. The ratio between the reflected and
incoming power flow determines a reflection coefficient which
is shown in Fig. 4. Each point has been numerically obtained
based on the power flow evolution along the longitudinal
coordinate ζ , as the inset of Fig. 4 illustrates. We define
the power flow via the interface as the amount of incoming
power that is transmitted into medium 2, so that the power
flow evaluated for each medium far away from the interface
(for instance, at ζ0 = 150) gives the amount of reflected and
transmitted power flow. Figure 4 shows that larger values
of α make the reflection coefficient increase. Moreover, the
reflected power flow is significant only for small angles
of incidence, thus explaining why we omitted this effect
previously in the analysis of large angles of incidence.

Based on the results of Fig. 4, we can define for each value
of α and θi a transmission coefficient tα,θ = 1 − rα,θ which
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FIG. 4. (Color online) Reflection coefficient as a function of the
angle of incidence for different nonlinear interfaces.

TABLE III. Transmission coefficient for very small angles of
incidence. In all cases, η0 = 1 and κ = 10−3.

α tα,1◦
∑

η0k/
√

α tα,2◦
∑

η0k/
√

α tα,3◦
∑

η0k/
√

α

2 0.9358 0.8563 0.9642 0.8664 0.9798 0.8756
3 0.9170 0.8776 0.9544 0.9299 0.9722 0.9493
4 0.8861 0.8480 0.9337 0.9136 0.9600 0.9470
5 0.8641 0.7902 0.9133 0.8664 0.9432 0.9091
6 0.8458 0.8212 0.9032 0.8752 0.9339 0.8902
7 0.8272 0.7979 0.8921 0.8666 0.9289 0.9249
8 0.8130 0.7676 0.8793 0.8510 0.9191 0.9026
9 0.8002 0.7847 0.8645 0.8276 0.9091 0.8878

gives the amount of power flow transmitted to the second
medium. Taking this into account, Eq. (7) must be corrected:

η0tα,θ ∼ 1√
α

N∑
i=k

η0k, (8)

so that the transmitted power flow injected into the second
medium is now scaled by tα,θ . Table III collects the numerical
values of both terms involved in Eq. (8) for θi = 1◦, 2◦, and
3◦, and the same values of α used in Tables I and II.

In all cases, one obtains tα,θ > α−1/2 ∑
η0k , so that the tiny

differences between the two terms are the result of the power
radiated by the newly generated solitons in medium 2. This
magnitude relative to the incident power has been numerically
calculated as in Fig. 4 and plotted in Fig. 5. Diamonds, circles,
and squares represent numerical values while the solid black
line represent the same theoretical prediction of the paraxial
theory which was plotted in Fig. 3(a).

Unlike the results of Fig. 3, radiation patterns for small
angles of incidence do not match the analytical predictions of
the paraxial theory (solid black). The NLS-based description of
soliton breakup [10] thus fails when small angles of incidence
come into play. This situation is similar to initial-value
problems which exhibit an angular character, so that they
cannot be properly addressed within the restrictions of paraxial
analyses [12].

The three numerical curves in Fig. 5 also suggest that
the radiation pattern moves to the right side as the angle
of incidence increases. The numerical results for angles of
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FIG. 5. (Color online) Power radiated in the second medium
relative to the incident power at θi = 1◦.
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incidence in the vicinity of θi = 5◦ are quite similar to those
shown in Fig. 3(a), thus establising the angular threshold
delimiting what we have defined as the small and large angular
regimes, respectively. If we now focus on the results for
θi = 1◦, the three peaks located at α = 2, 5, and 8 reveal that
an additional soliton is found in the vicinity of α = 2.5, 5.5,
and 8.5, respectively. That explains why we chose α = 6 and
9 in Fig. 2 to highlight the angular dependency on the number
of solitons.

F. Angle of refraction

The angle of incidence may affect not only the number of
solitons appearing in the second medium, but also the way
the new multisoliton pattern arises. This is shown in Fig. 6
which illustrates the evolution of a Helmholtz soliton entering
the same nonlinear medium (α = 4) with different angles
of incidence, namely, θi = 1◦, 20◦, and 80◦ corresponding
to Figs. 6(a), 6(b), and 6(c), respectively. For large enough
angles of incidence, the divergence among the emerging beams
decreases, as shown in Fig. 6(c) where the two solitons appear
as single entities far away from the interface. This behavior
has already been observed in previous paraxial work [10].

Our Helmholtz analysis, however, goes further: the angle
of refraction of the largest-amplitude beam in medium 2 fits
the predictions of the generalized Snell’s law. Nonlinear-
step interfaces with α > 1 lead to external refraction, as is
represented by the set of lines in Fig. 6(d) obtained for α = 2
(dotted black), α = 5 (solid red), and α = 9 (dashed blue). The
numerical results, represented by the series of circles, squares,
and diamonds, agree with theoretical predictions showing that
the angle of refraction tends to the angle of incidence as this
increases. This behavior is captured in the plots of Fig. 6
where the angle of refraction of the largest-amplitude soliton
in medium 2 is displayed.
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FIG. 6. (Color online) Soliton decomposition for α = 4 and
different angles of incidence θi = 1◦ (a), θi = 20◦ (b), and θi = 80◦

(c). (d) Angle of refraction for the soliton with the largest amplitude
for nonlinear-step interfaces and κ = 10−3.

IV. DARK SOLITON BREAKUP

We now consider the circumstances and consequences
of multiple dark solitons [30] being generated at nonlinear
interfaces. Although the refraction of dark solitons has been an-
alyzed within the framework of the Helmholtz theory [22,23],
only the angular relationships between single incident and
refracted solitons have been studied. The full characterization
of multisoliton patterns emerging upon crossing a nonlinear
interface is still lacking and constitutes the main object of this
section.

In the case of focusing Kerr media, we have considered
the role of an interface in terms of two, potentially distinct,
effects, i.e., reflection at the interface and radiation generation.
The former has been found to play a significant role for
small angles of incidence, being negligible for large angles
of incidence. Such an angular clasification of the problem
fails completely for the case of defocusing Kerr interfaces.
Dark soliton splitting can be analyzed only for large angles of
incidence, so that the background beam supporting the soliton
dip is not severely affected by the perturbation that the interface
represents.

A. Black soliton breakup

We address here the splitting of black solitons upon travers-
ing a nonlinear interface. Pairs of gray solitons propagating at
opposite angles can be generated in a Kerr medium whenever
the initial condition does not correspond to the fundamental
black soliton. Within the paraxial approximation, an initial
condition of the form u(ξ,0) = u0 tanh(aξ ) leads to the
generation of a set of gray solitons whose number, amplitude,
and transverse velocity depend on the ratio u0/a [27,28].
Nontrivial corrections in soliton properties have been reported
for the same type of problem in the general nonparaxial
description [15].

Our interface problem here can be described in a similar
way provided a is replaced by α−1/2. A fundamental black
soliton in medium 1 which impinges on medium 2 with a
larger Kerr nonlinearity α > 1 can create, besides a black
soliton, 2N0 additional gray solitons, where N0 is the largest
integer satisfying N0 <

√
α. Thus, the slightest increase in

nonlinearity across the interface will give rise to an additional
pair of gray solitons. This feature is consistent with the
thresholdlesslike character of gray soliton generation [28],
and is in contrast with the thresholds encountered for
generating additional bright solitons at interfaces separating
two focusing Kerr media.

Figures 7(a) and 7(b) illustrate the creation of two and
four additional solitons when α = 4 and α = 9. Also, for
each simulation, α was chosen to be immediately below the
threshold for generation of a further two gray solitons and,
again, such additional solitons are not observed in either case.

Both plots of Fig. 7 also illustrate the investigation carried
out on black soliton breakup. A fundamental black soliton is
launched at distinct angles of incidence on different nonlinear
interfaces which, unlike the case of bright breakup, are not
restricted to nonlinear-step interfaces. In fact, we have assumed
� < 0 in Fig. 7 to work under the total transparency condition
for black solitons [22], thus assuring that the refracted
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FIG. 7. (Color online) (a) Two additional gray solitons are
generated when � = −1.5 × 10−2, α = 4, and θni = 70◦. (b) Four
new gray solitons appear when α = 9, � = −5.4 × 10−2 and θni =
80◦. In both cases, u0 = 1 and κ = 10−3.

fundamental dark soliton preserves the angle of incidence.
However, we find that for large values of α this condition
only holds approximately. If we also exploit the rotational
symmetry that the Helmholtz framewok provides [11,23], the
refracted black soliton will propagate in medium 2 along the
longitudinal coordinate, so that the gray soliton pairs arising
at the interface will exhibit a symmetric pattern.

B. Fundamental black soliton

We study first the main features of the refracted fundamental
black soliton. The direction of propagation of the primary
black soliton in medium 2 obeys the generalized Snell’s law,
as shown in Ref. [23]. However, Figs. 7(a) and 7(b) also show
that a pronounced narrowing of the primary soliton is visible
for those interfaces with larger α. This feature is expected, for
the correct soliton shape in strongly nonlinear media, and is
already accounted for within the solution matching involved
in the derivation of Eq. (3).

Numerical evidence of this result is displayed in Fig. 8,
which shows the soliton width evolution along ζ in relation
to the soliton width of a fundamental black soliton which
impinges on five different nonlinear interfaces at the reference
angle of incidence θi = 70◦. After an abrupt change occurring
close to the interface, the soliton width evolves toward a
stationary value in medium 2. The set of lines in the left side
of Fig. 8 correspond to the value of α1/2 that is the theoretical
soliton width in medium 2 predicted by Eq. (3). The agreement
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FIG. 8. (Color online) Width evolution of the primary refracted
black soliton for different values of α.

between numerics and theoretical results holds for most cases.
Only for α = 9 is a tiny mismatch between numerics and
analysis found, as a result of the radiation released at the
interface on using large values of � to ensure δ− → 0. The
beam dynamics resulting from the interface interaction in
Fig. 8 is similar to that of Ref. [15] arising from initial-value
problems. In fact, nonlinear interfaces are shown to provide an
excellent scenario for the spontaneous generation of Helmholtz
solitons.

C. Gray soliton pairs

We now turn our attention to the analysis of the pairs of
gray solitons generated at the planar boundary. This problem
has been analytically solved for the NLS equation when an
initial-value problem of the form u(0,ξ ) = u0 tanh(aξ ) is used
[28]. The nonparaxial theory for the same type of initial-value
problem described before reveals that the transverse velocity
of Helmholtz gray soliton pairs evolves according to the
nonparaxial predictions [15].

In our interface problem, the transverse velocity of a dark
soliton traveling in medium 2 after being refracted by a
nonlinear interface is expected to evolve according to Ref. [23]

V0 = u0Fα1/2[
1 − � − (2 + F 2)2κu2

0α
]1/2 , (9)

where all parameters have been defined in Eq. (4). Taking
into account that we make the refracted primary black soliton
propagate in medium 2 along the longitudinal axis, Eq. (9)
thus gives the net transverse velocity of the first pair of gray
solitons in relation to the refracted primary black soliton, as
represented in Fig. 9(a). The angle �θ associated with V0 in
the unscaled coordinate system, tan2 θ = 2κV 2 [11], is

�θ = tan−1

{√
2κu0

2F 2α

1 − � − (2 + F 2)2κu2
0α

}
. (10)

In order to test the validity of Eq. (10), we made a
fundamental black soliton impinge on different nonlinear
interfaces at distinct angles of incidence as shown in Fig. 9(a).
Numerical results for �θ are displayed with large black
diamonds (α = 9), green triangles (α = 7), red squares (α =
5), and blue circles (α = 3) in Fig. 9(b), revealing that the angle
of refraction of gray soliton pairs (when compared to the angle
of the primary black soliton) increases for larger values of α

and remains independent of the angle of incidence.
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FIG. 9. (Color online) (a) Definition of V0. (b) Numerical values
(points) and predictions (lines) for �θ and different values of α.
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SÁNCHEZ-CURTO, CHAMORRO-POSADA, AND MCDONALD PHYSICAL REVIEW A 85, 013836 (2012)

3 4 5 6 7 8 9
0.7

0.8

0.9

So
lit

on
 g

ra
yn

es
s 

(F
)

α

θ
i
=50o

θ
i
=80o

FIG. 10. (Color online) Grayness of gray soliton pairs for
different values of α and θi . In all cases, u0 = 1 and κ = 10−3.

The black diamonds (α = 9), green triangles (α = 7), red
squares (α = 5), and blue circles (α = 3) represent Eq. (10)
for the same set of parameters used in the simulations, i.e.,
u0 = 1, κ = 10−3, and interface parameters in the vicinity of
the total transparency condition. The value of F in Eq. (10) has
been extracted from simulations and is shown in Fig. 10 for
distinct nonlinear interfaces and two angles of incidence. The
larger the nonlinear mismatch, the darker is the gray soliton
pair. This can also be observed in the two images of Fig. 7 for
α = 4 and α = 9.

The analysis performed here has focused on the primary
gray soliton pairs associated with the lower terms (n = 1) of
the initial-value problem [27]. Additional pairs obtained for
n > 1 will reduce their darkness and, hence, undergo a larger
divergence. This can be seen in Fig. 7(b) where two additional
pairs behave according to these predictions.

D. Asymmetries in the decomposition

We also find another interface-related feature present for
both black and gray soliton refraction, which is that multiple-
soliton generation exhibits asymmetries in the directions and
widths of the resultant beams when the total transparency
restriction is removed from the analysis.

Figures 11(a) and 11(b) illustrate this effect for external
(δ− < 0) and internal (δ− > 0) refraction, respectively. Similar
results have also been demonstrated for gray soliton refraction
for which (to our knowledge) no perturbed gray initial-value
problem has been reported.
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FIG. 11. (Color online) Asymmetrical dark soliton patterns ob-
tained when � = −2.2 × 10−2 and α = 4 (a), and � = 10−3 and
α = 2.5 (b). In both cases, u0 = 1, κ = 10−3, and θi = 40◦.

V. Numerical results

Massive numerical simulations have played an essential
role in this paper. Not only bright but also dark soliton splitting
has been simulated based on a nonparaxial beam propagation
method [31], which has become a powerful tool to contrast the
validity of the analytical predictions of the Helmholtz theory.
It is a difference-differential method [31] which combines
finite differences and spectral methods. The second initial
condition is obtained from the exact expression of the incident
soliton [11]. Simulations for both focusing and defocusing
Kerr media have exploited the rotational symmetry that the
Helmholtz framework provides. Instead of launching solitons
with a nonzero angle of propagation that impinge on a planar
boundary placed at ξ = 0, the interface is rotated, so that
solitons propagating with zero transverse velocity encounter
the interface obliquely placed at the same angle.

The main difference between the simulations of bright and
dark soliton splitting is the amount of propagation steps needed
in each case. While simulations for bright solitons require 2 ×
106 propagation steps, black soliton simulations demanded
only 2 × 105. We have employed in this paper the same
finite background beam as in Ref. [23], i.e., a raised cosine:
h(ξ ) = cos2[π/rL(|ξ | − L1)], if L1 < |ξ | < L2; h(ξ ) = 1, if
|ξ | � L1; and h(ξ ) = 0, if |ξ | � L2, where the roll-off factor
r = 0.5, grid length L = 160, L1 = (1 − r)L/4, and L2 =
(1 + r)L/4. We have thus assured that the generated dark
soliton pattern at the interface evolves on the flat background
the necessary propagation steps to extract the main properties
of the supported dark solitons. The transverse coordinate has
been sampled with N = 115 200 = 29 × 152 data points to run
efficiently on 15 cores or processors of our parallel computing
systems [32]. In this work, the symmetric multiprocessor
system used is a HP Proliant DL580 G5 composed of four
4 Intel Xeon 7320 Quad core processors running at 2.13 GHz.

VI. CONCLUSIONS

In this work we have analyzed soliton breakup at nonlinear
interfaces separating two focusing and defocusing Kerr-type
media within the framework of the Helmholtz theory, thus
preserving the full angular content of the problem. This has
allowed us to demonstrate, in the case of bright solitons, that
soliton breakup depends strongly on the angle of incidence.
Such angular dependency, absent from a NLS equation–based
analysis, is manifest not only in the number of solitons formed
in the new medium, but also in the amount of reflected power
at the interface or in the radiation modes appearing in the new
nonlinear medium. Unlike paraxial analyses, the Helmholtz
framework accommodates the angular character that initial-
value problems may exhibit. Our Helmholtz analysis has been
compared with previous paraxial works based on the NLS
equation, where agreement between paraxial and Helmholtz
results was found to be limited only to large angles of
incidence.

The same Helmholtz theory has allowed us to analyze the
generation of dark soliton patterns at a nonlinear interface
separating two defocusing Kerr media. We have fully deter-
mined the main properties of the resulting soliton pattern in
medium 2 composed of a fundamental black soliton and pairs
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of gray solitons traveling with nonzero transverse velocities.
Excellent agreement between Helmholtz-based predictions
and numerical results obtained from the numerical integra-
tion of the NLH equation has been found throughout this
work.
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