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Abstract: Uniform and regular systems can generate optical 
fractals.  After characterizing different fractal-generating systems, 
emphasis is placed on the roles of boundary conditions and cavity 
feedback. New aspects of linear and nonlinear optical fractals are 
presented, along with considerations of system coherence and novel 
connections to some classic systems and configurations. 
 

I. INTRODUCTION 
 

Universal instabilities in Nature tend to transcend the 
particular details of individual physical systems, and their 
effect is to drive the emergence of familiar universal patterns. 
In an essential way, these patterns may often be classified as 
either simple (have structure governed by a single dominant 
scale length) or fractal (possessing proportional levels of detail 
across many orders of scale). Both types of pattern are 
fundamentally important to research in the field of complexity, 
which exploits universal features in trans-disciplinary 
applications. Our interest here lies primarily with optical 
fractals and in the candidate systems that are potentially 
capable of generating them.  A focus will be placed on 
transverse and longitudinal boundary conditions that may 
dictate, or modify, fractal-generating capacity. In this Invited 
talk, we consider details of two simple cavities (one linear, one 
nonlinear) that can generate optical fractal patterns. 
Introduction of incoherence effects is also examined and 
potential connections to classic systems and configurations, 
that are not normally associated with fractal generation, are 
outlined.  
 

II. OPTICAL FRACTAL CHARACTERIZATION 
 

We characterize optical fractals as falling broadly into four 
distinct categories, each of which has its own particular nature 
of generating multi-scale structure.  These categories are: 

(i) Linear fractals. One of the earliest reports of linear 
optical fractals is diffractals (plane waves scattered by non-
regular/fractal objects) [1]. Although it is intuitive that light 
diffracted by complex gratings might acquire complex 
structure, even a simple (regular) square-wave grating can also 
produce fractal light patterns through repeated self-imaging of 
the grating itself (the Talbot effect) [2]. Self-imaging is a 
property of many linear optical systems. For instance, the 
transverse empty-cavity modes of classic unstable strip 
resonators have fractal character [3], where the eigenvalue 
problem (a criterion for self-reproducing mode profiles) 
involves an interplay between small-scale diffraction effects at 

the mirror edges and successive round-trip magnifications [4]. 
Mode fractality was later confirmed in so-called kaleidoscope 
lasers, that include non-trivial transverse boundary conditions 
[5,6]. Alternative schemes for optical self-imaging, such as 
multiple-reduction copiers and pixellated video feedback 
setups [7], have provided further (potentially linear) contexts 
for spatial fractal formation; 

(ii) Soliton fractals. A range of fractal patterns in soliton-
supporting systems has been identified over the last two 
decades. The existence of these patterns is directly related to 
nonlinear light–material coupling. Self-similarity has been 
predicted during the amplification of parabolic pulses in optical 
fibres [8] and also in the distributions of soliton profiles in 
systems with series of abrupt material discontinuities (that can 
induce individual new scale lengths through splitting 
phenomena) [9]; 

(iii) Nonlinear phase-space fractals. Fractals can appear in 
the parameter characterization of nonlinear optical phenomena 
(while their real-space and time representations remain non-
fractal).  Examples include bifurcations in the phase-space of 
chaotic pixel-pixel mappings in optical memory applications 
[10] and in the properties of interacting vector solitons [11]; 

(iv) Spontaneous nonlinear spatial fractals. Finite-
amplitude simple universal patterns (e.g., stripes, squares, 
hexagons, honeycombs, etc.) may grow spontaneously from the 
homogeneous states of a reaction-diffusion system that is 
sufficiently stressed. Turing showed that the origin of simple-
pattern emergence is the existence of a single threshold 
instability minimum whose characteristics dictate the dominant 
scale length of the pattern [12]. More recently, we proposed 
that any system whose threshold instability spectrum comprises 
a hierarchy of comparable Turing minima may be susceptible 
to truly spontaneous fractal pattern formation. The first 
prediction of such patterns was made for a simple system: the 
Kerr slice with a single feedback mirror [13,14]. Our 
subsequent analyses of dispersive and absorptive ring cavities 
[15] have offered further evidence that multi-Turing threshold 
minima can be a generic signature of a system’s innate fractal-
generating capacity. 

 
III. FRACTALS IN LINEAR CAVITIES 

 

   Kaleidoscope lasers are generalizations of classic unstable 
resonators to two non-trivial transverse dimensions (2D), and 
where the system aperture has the shape of a regular polygon 
[6]. The non-orthogonal edges of this element have a profound 



 
Fig. 1.  Lowest-loss kaleidoscope laser modes for a range of transverse 
geometries when Neq = 30 and M = 1.5.  The lower panes are a 
magnification of the central portion of the pattern. 
 

 

 
Fig. 2.  Lowest-loss mode and first three higher-order modes (left to right) 
for a kaleidoscope laser with N = 9 and M = 1.5.  Top row: Neq = 20.  
Bottom row: Neq = 30. 
 
impact on the structure of the cavity eigenmodes, which exhibit 
a striking level of beauty and complexity. Unstable cavity 
lasers are typically described by two free parameters: the 
equivalent Fresnel number Neq (which quantifies the cavity 
aspect ratio) and round-trip magnification M. Previous analyses 
of kaleidoscope lasers have been restricted to regimes where 
Neq = O(1) (then fully-numerical ABCD paraxial matrix 
modelling can be deployed [5,6]) or Neq >> O(1) (in which case 
asymptotic approximations may be used [16]).  Our approach, 
which is based on a fully-2D generalization of Southwell’s 
Virtual Source (VS) method [17], exploits exact mathematical 
descriptions of the fundamental spatial structures – Fresnel 
edge-waves [18]. 
   Virtual source theory unfolds a geometrically unstable cavity 
into an equivalent sequence of NS = log(250Neq)/log(M) virtual 
apertures. Any desired eigenmode can then be constructed 
from a linear superposition of the edge-waves diffracted by 
each aperture, plus a plane-wave component. In scaled units, 
the mode pattern V(X) is given by 
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where X denotes an appropriate set of transverse coordinates, 
XC is any point on the boundary of the feedback mirror, and 
Em(X) is the composite edge-wave pattern arising from the mth 
virtual aperture [18]. The weighting factor α plays the role of 
the mode eigenvalue; it is obtained by finding the roots of an 

 
Fig. 3. Transition to circularity for the lowest-loss mode of a kaleidoscope 
laser with Neq = 30 and M = 1.5.  The lower panes show a magnification of 
the central portion of the pattern.  The number of aperture edges in each 
case is (left to right): N = 10, 20, 30, and 40. 
 
associated polynomial equation. 
    The eigenmodes of arbitrary-N cavities have been calculated 
for the first time, and with unprecedented accuracy, with any 
desired Neq and M (see Fig. 1). A particularly useful facet of 
our 2D-VS modeling is that a single application can determine, 
simultaneously, the lowest-loss mode and all higher-order 
modes (see Fig. 2). As N → ∞, the feedback mirror becomes 
circular and the cavity essentially has only a single transverse 
dimension. This limit has been investigated by Berry under the 
assumption Neq>>O(1), and only for the lowest-loss mode [16]. 
For cavities with arbitrary Neq and M, this type of fully-2D 
convergence does not lend itself to asymptotic analysis; it can 
only truly be addressed via numerical computation (see Fig. 3). 
We will present, what is to the best of our knowledge, the first 
in-depth treatment of the quite subtle circular limit of families 
of kaleidoscope-laser modes. 
 

 
Fig. 4.  (a) Slice through the lowest-loss mode of a triangular kaleidoscope 
laser with Neq = 703.3 and M = 1.9 (sampling line passing through a vertex 
and perpendicularly through the opposite edge). (b) BENOIT power 
spectrum calculation and best-fit line [whose slope is directly related to 
the fractal dimension of the pattern shown in part (a)]. 



We have been begun looking into the fractal dimension [19] of 
kaleidoscope laser modes, a topic that is still not well 
understood. Dimension calculations are computationally non-
trivial, and specialist software has been used to help facilitate 
analysis [20]. Some unexpected results have been uncovered. 
For example, the power-spectrum fractal dimension of a slice 
through the lowest-loss mode pattern for a triangular cavity 
with Neq = 703.3 and M = 1.9 turns out to be approximately 1.5 
(see Fig. 4), which is essentially identical to that for the 
corresponding mode of a confocal strip resonator with the same 
parameters [19]. This surprising result, which is in stark 
contrast to asymptotic analysis [16], suggests something quite 
profound: the fractal dimension of kaleidoscope laser modes 
may be largely independent of N. 
 

IV. FRACTALS IN NONLINEAR CAVITIES 
 

Earlier analyses and simulations of a simple system with a 
single Kerr slice and a feedback mirror [13,14] demonstrated 
spontaneous nonlinear fractal formation.  Our later analyses of 
dispersive and absorptive ring cavities [15] provided further 
evidence that multi-Turing threshold minima can be a generic 
signature of a system’s innate fractal-generating capacity.  

A nonlinear Fabry-Pérot cavity is a deceptively simple 
system, since it has potential for highly complex behaviours 
even in the plane-wave limit [21]. Results of analyses of this 
new geometry will be presented.  The full transverse system 
can be analysed as a direct generalisation of a single feedback 
mirror system [13,14], in which one of the faces of the thin 
Kerr slice is partially reflecting.  Spontaneous pattern 
instabilities arise from an interplay that involves: cavity 
boundary conditions; diffraction of light beams; diffusion of 
the medium excitation (whose optical response gives rise to 
nonlinearity); and the interaction of counter-propagating light 
beams. 

A systematic approach is taken to quantify the generalisation 
to the nonlinear Fabry-Pérot system. First, we examine an 
intermediate configuration in which a lossless and resonant 
cavity is considered.  Analysis predicts, and simulations verify, 
both simple and fractal pattern formation in this case.  Second, 
we present a full analysis of the spatiotemporal stability of the 
complete Fabry-Pérot system. The single feedback mirror 
configuration is found to be recovered as a limit of the more 
general stability analysis; the weakly-reflecting slice case 
exhibits only gentle modulations of the instability threshold 
curves.  Fractal formation is thus also predicted in the full 
nonlinear Fabry-Pérot system. 
 

V. COHERENCE AND CONNECTIONS 
 

   Within the process of generalisation to systems of counter-
propagating beams in nonlinear cavities, the role of 
incoherence in spatial pattern formation of systems, with 
instantaneous nonlinear response, has been examined.  We will 
demonstrate that coherent spatial patterns can indeed emerge 
from initial states of high incoherence. The case where a 
system is maintained as incoherent, though noisy complex 
pump beams, has also been considered. Pattern formation has 
been found to be surprising stable also in this case. 

    Finally, having presented further evidence that systems with 
multi-Turing minima have a strong likelihood to have a fractal-
generating capacity, the question of whether systems presenting 
a single Turing minimum can be induced to form spatial 
fractals is examined.  We draw on, what we believe to be is, a 
novel space-time analogy to propose that inducing spatial 
fractals may actually be relatively straightforward. This 
element of generalisation provokes intriguing connections with 
the behaviour of classic optical, and non-optical, nonlinear 
systems.  
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