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Multi-colour spatial solitons comprise localized optical components at distinct temporal frequencies [1].  The 

components (which may be bright-like and dark-like) tend to overlap in space, thereby allowing the interplay 
between linear spreading (diffraction) and nonlinear effects (self- and mutual-focusing) to result in an 
electromagnetic structure with a stationary intensity pattern.  Two-colour spatial solitons for a Kerr-type medium 
were proposed by De La Fuenete and Barthelemy [2] within the context of an intuitive nonlinear Schrödinger 
model.  Subsequent experiments, using continuous-wave (CW) laser light at red and green wavelengths, 
demonstrated that such mutually-trapped light beams could be generated in CS2 waveguides [3].  This opened up 
the possibility of multi-colour photonic device applications and architectures [4]. 

Here, we introduce a novel Helmholtz model for two-colour CW optical fields whose temporal frequency 
separation is similarly large.  A key advantage of our approach is that it allows one full access to multi-
component geometries involving propagation at arbitrary angles and orientations with respect to the reference 
direction [5] – such considerations are central to off-axis configurations involving, for instance, beam 
multiplexing [6] and interface [7] scenarios.  In contrast, classic paraxial models [2,3] capture angles (in the 
laboratory frame) that are negligibly, or near-negligibly, small [4].  The two-colour modulational instability 
problem can be solved in a range of physically relevant regimes.  Bright-bright and bright-dark solitons are also 
reported, each of which having co-propagation and counter-propagation solution classes that are connected by 
geometrical transformation.  Extensive computations [8] have confirmed the validity of analyses (see Fig. 1).  

 

   

Fig. 1  Inherent instability of the exact analytical bright-dark Helmholtz soliton – bright 
component shown in (a), dark component in (b).  Modulational instability develops initially on the 
finite-amplitude plane-wave background of the dark component in u2, leading to filamentation [the 
dominant spatial frequency in part (b) is predicted by linear analysis].  This instability then feeds 
through the system, via nonlinear coupling, to destabilize the bright component u1. 
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