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A generic nonparaxial model for pulse envelopes is presented. Classic Schrödinger-type descriptions of 
wave propagation have their origins in slowly-varying envelopes combined with a Galilean boost to the 
local time frame. By abandoning these two simplifications, a picture of pulse evolution emerges in which 
frame-of-reference considerations and space-time transformations take centre stage. A wide range of ef-
fects, analogous to those in special relativity, then follows for both linear and nonlinear systems. Explicit 
demonstration is presented through exact bright and dark soliton pulse solutions. 
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    The slowly-varying envelope approximation (SVEA) is 
universal in the treatment of wave phenomena [1]. It is 
routinely deployed across a diverse range of contexts, 
from photonics and quantum mechanics, to hydrodynam-
ics and plasma physics. One is often concerned with de-
scribing the envelope modulating a physical wave-like 
quantity (such as electric field, fluid velocity, or ion den-
sity) with an underlying rapidly-oscillating carrier com-
ponent. The SVEA (which assumes that the longitudinal 
modulation is slow compared to the scale-length of the 
carrier oscillation) tends to go hand-in-hand with a Gali-
lean boost to a reference frame moving at some character-
istic speed. Together, the SVEA and subsequent Galilean 
boost constitute a mathematical device that has been ap-
plied with great success over many decades. An obvious 
question to pose is: what happens if this device is omit-
ted?  
    In this Letter, we provide some surprising answers to 
that seemingly straightforward question. For clarity, a 
simple nonlinear system, applicable in a wide range of 
physical contexts, is chosen for analysis. We find that 
merely accommodating second-order temporal dispersion 
without the SVEA introduces unexpected features; a 
study of the generic interplay between spatiotemporal 
dispersion and nonlinearity uncovers aspects expected to 
have general implications for pulse characteristics in lin-
ear and nonlinear systems. Such a nonparaxial model is 
derived for a particular context of optical pulses in 
nonlinear waveguides. Analysis includes Helmholtz soli-
ton theory in the time-domain, where the governing equa-
tion differs structurally from those describing Helmholtz 
soliton beams [2].  
    Results furnish a mathematical framework beyond that 
of conventional models and which is rich in spatiotempo-
ral considerations. When spatial and temporal dispersive 
effects are both at second-order, the structure of the model 
allows many of its predictions to be interpreted within a 
framework that is closely akin to Einstein’s special theory 
of relativity (pulse propagation problems are rooted in 
notions of observers and frames of reference). At the heart 
of our analysis lies a set of space-time operations related 

to the Lorentz coordinate transformation [3]. Derivation 
of the optical model involves some well-known steps 
(e.g., introduction of wave envelopes and Fourier decom-
position of the temporal dispersion operator). However, 
the “SVEA + Galilean boost” device is abandoned and we 
instead remain in the laboratory frame. Such a choice is 
clearly allowed physically; it is, after all, the frame in 
which experiments are typically performed and measure-
ments made [4]. This is a fundamental feature that distin-
guishes our analysis from many standard treatments [5-8]. 
    For few-picosecond pulses at communication wave-
lengths in single-mode silica fibres, it is reasonable to 
assume the SVEA [9]. The same cannot necessarily be 
said for light in some semiconductors (e.g., ZnCdSe / 
ZnSe superlattices) with spatial material dispersion (an 
effect allied to dynamics of polaritons in the medium). 
The seminal analysis of Biancalana and Creatore [10] 
probed the role of spatial material dispersion in scalar 
nonlinear pulse physics by deriving a single leading-order 
contribution term that can describe its effects in certain 
parameter regimes. This term, proportional to a second-
order longitudinal derivative, can combine with the corre-
sponding generic Laplacian term in wave descriptions 
(that the SVEA discards). A Galilean boost applied to the 
resulting Helmholtz-type model can be followed by ne-
glecting a cross-derivative term [10] to render analysis 
similar to that of nonlinear beams [2]. Here, we examine a 
more general and exact governing equation that captures 
second-order spatiotemporal dispersion without either 
approximation.  
    A scalar electric field travelling down the longitudinal 
axis z of a waveguide can be represented by E(t,z) = 
A(t,z)exp[i(k0z – 0t)] + c.c., where A(t,z) is the envelope, 
t is time, and c.c. denotes complex conjugate. The optical 
carrier frequency and wavenumber are 0 and k0 = n00/c, 
respectively, where n0 is linear refractive index at fre-
quency 0, and c is the vacuum speed of light. The Fou-
rier transform of the pulse envelope satisfies [2/z2

 + 

i2k0∂/∂z + k2() – k0
2]Ã(– ,z) = 0, where the propaga-

tion constant k() depends implicitly on the temporal  
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FIG. 1 (color online). Illustration of the relationship between 
pulse durations in the laboratory frame (,) and the rest frame 
(0,0). The two distinct spatiotemporal regimes are: (a) sgn(s) 
= +1; and (b) sgn(s) = –1. 
 
 
dispersive properties of the waveguide [9,11].  Anticipat-
ing Ã to remain localized near 0, one has k2() – k0

2  
2k0[k() – k0] and k() – k0  + k1( – 0) + (k2/2)( – 
0)2, where kj ≡ (∂jk/∂j) = 0 for j = 0, 1, and 2. For a 
Kerr-type nonlinearity, the dimensionless envelope u sat-
isfies: 
 

           
2 2

2
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.       (1) 

 

Normalized space and time coordinates are  = z/L and  
= t/tp, respectively, where tp is a reference pulse duration 
and L = tp2/|k2|. The sign of group velocity dispersion 
(GVD) is flagged by s = –sgn(k2) = ±1 (+1 for anomalous; 
–1 for normal), and  ≡ k1tp/|k2|. The spatial dispersion 
coefficient  = 0 + D has two contributions:  ≡ 1/2k0L 
is an inherent wave feature, while D is a medium compo-
nent that can be negative [10]. Finally, u = A/A0 where 
A0=(n0/n2k0L)1/2  and n2 is the Kerr coefficient. 
    In conventional pulse physics [1,4–9,11], one assumes 
an envelope slowly varying in  then neglects the first 
term in Eq. (1). The linear wave operator may be simpli-
fied further by introducing a set of local time coordinates, 
loc =  –  and loc = . The governing equation then 
reduces to the canonical nonlinear Schrödinger (NLS) 
class, namely [i∂/∂loc + (s/2)∂2/∂loc

2 + |u|2]u(loc,loc)   
0, whose solutions describe waves in a frame moving at 
speed 1/ along the  axis. Conventionally, the term 
i∂u/∂ is thus transformed away by the Galilean boost.  
In contrast, our analysis shows that the interplay of this 
contribution with other terms in Eq. (1) can be of funda-
mental significance. 
    When implementing the Galilean boost without making 
the SVEA, one obtains 
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The cross-derivative term ∂2u/∂loc∂loc is particularly 
troublesome, defying straightforward interpretation and 
being awkward computationally. One could perhaps re-
strict attention to solutions with  << O(1) and 2 << 
O(1), with terms at ∂2u/∂loc

2 and ∂2u/∂loc∂loc assumed to 

be both O(1). These solutions satisfy [∂2/∂loc
2 + i∂/∂loc 

+ (s/2)∂2/∂loc
2 + |u|2]u(loc,loc) = 0, which is identical in 

structure to the spatial Helmholtz equation [2]. However, 
such a level of approximation is not in the spirit of this 
analysis. Since the Galilean boost serves no useful pur-
pose, we dispense with it and deal directly with Eq. (1) 
instead.
    The characteristics of Eq. (1), which are determined by 
the interplay between spatial and temporal dispersion, 
may be classified as relativistic [hyperbolic when sgn(s) 
= –1] or pseudo-relativistic [elliptic when sgn(s) = +1]. 
With these distinctions in mind, it is instructive to con-
sider transformations in the (,) plane. Under the coordi-
nate change 
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which is parameterized by velocity V, the covariance of 
Eq. (1) is guaranteed so long as u transforms according to 
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(3c) 

 
One then encounters the first notion of connections to 
special relativity – the coordinate transformation is close 
to the two-dimensional Lorentz form [3], but where  
plays the role of “space” and  is the analogue of “time.”  
The correspondence is essentially exact when sgn(s) = –
1, in which case Eqs. (3a) and (3b) describe a skew [or a 
rotation when sgn(s) = +1], as shown in Fig. 1. 
    By considering coordinate differences  ≡ 2 – 1 and 
 ≡ 2 – 1, it can be shown that 2 ≡ 2/2s + 2 is 
the invariant interval between points 1 and 2 in the (,) 
plane. When sgn(s) = +1, rotation (3) preserves a quan-
tity 2 that is essentially the geometric distance between 
the points (a signature of Euclidean spaces). Conversely, 
when sgn(s) = –1, skew (3) does not preserve ‘geometric 
distances.’  In such a regime, the (,) plane behaves more 
like a Riemanian space [12]. 
    Two successive applications of transformation (3), pa-
rameterized by V0 and V, respectively, uncover the veloc-
ity combination rule for solutions of Eq. (1):  
 

0

01 2
V VW

s VV





.     (4) 

This rule bears striking similarity to the addition law for 
particle and wavepacket (group) velocities in special rela-
tivity (though one must be mindful that V0, V, and W are 
strictly related to inverse velocities in unscaled units). 
There are two other crucial points to note about Eq. (4). 
Firstly, it has been derived independently of any particular 
solution; secondly, it is independent of the Kerr effect. It 
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thus applies to a wide range of uniform nonlinearities 
and, equally well, to linear systems [13]. 
    Having considered the space-time geometry of Eq. (1), 
we turn attention to exact analytical solutions. For a lucid 
description of the consequences of spatiotemporal disper-
sion, we will consider only unidirectional solutions. The 
simplest solutions are continuous wave (CW) fields u(,) 
= 0

1/2exp[i(– + K)]exp(–i/2). Here, 0 is light in-
tensity,  measures the deviation of the envelope from 
the carrier frequency, and K is a propagation constant. 
The dispersion relation 2 –1/4 – ( – s/2) – 0 = 0 
prescribes families of ellipses or hyperbole in the (,K) 
plane; its two solution branches are K = ±[1 + 40 + 
4( – s/2)]1/2/2. The quadratic character of the wave 
equation supports evolution in both forward (+) and 
backward (–) longitudinal senses, as model (1) recognizes 
the physical equivalence of the +z and –z directions [2].  
    It is helpful to assess the stability of ( = 0) CW solu-
tions against small-amplitude modulations. Considering a 
Fourier mode with temporal frequency p and complex 
wavenumber Kp (whose imaginary part allows growth of 
this perturbation), linear stability analysis [14], reveals 
that Kp satisfies 
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(5) 
Equation (5) predicts a (-independent) long-wave modu-
lational instability for s = +1 but not for s = –1; as one 
might expect. Short-wave instabilities are more involved 
[and depend upon sgn(s)], but they do not affect physi-
cally meaningful solutions [14]. 
    Of more interest than CW solutions are solitons. These 
self-localizing and self-stabilizing pulses play a pivotal 
role in the understanding of waves in nonlinear systems. 
The soliton solutions vividly demonstrate some key char-
acteristics that arise from the linear wave operator in-
volved. The governing equation admits two distinct fami-
lies of exact analytical solitons. Bright families exist in 
the anomalous GVD regime (s = +1) and are given by 
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where 0 is peak intensity and  ≡ 0/2. The upper (lower) 
signs correspond to pulses travelling in the forward 
(backward) longitudinal direction. Dark families arise in 
the normal GVD regime (s = –1). They comprise a 
(modulationally stable) CW background that supports a 
phase-topological “dip” [2,6,10]. For brevity, we present 
only the black solution here: 
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where  ≡ 0. For solitons (6a) and (6b), the net velocity 
W is given by 
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Pulses with  < 0 travel faster than those with  > 0, 
while the subset of solutions that evolve forward in time 
are those with  > – (which ensures that W > 0). 
    When  = 0, so that the pulse envelope is centred on 
the carrier frequency, the intrinsic velocity is found to be 
V0 = /(1 + 4)1/2. An application of combination rule 
(4) then yields V = (W – V0)/(1 + 2sWV0), whereupon 
substituting for W [from Eq. (7)] and V0, one finds that 
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(8) 
One can always boost to the rest frame of the solitons by 
deploying transformation (3) with the velocity parameter 
selected to be W [as given in Eq. (7)]. In that frame, the 
pulse duration is 0 ≡ 2/0

1/2 while in the laboratory 
frame it is  = (1 + 2sW2)1/20, or equivalently 
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Hence, measured pulse duration depends explicitly upon 
both system and solution parameters: 0 is dilated to 
(contracted to)  when sgn(s) = +1 (–1), as in Fig. 1. 
    It is essential that the predictions made by Eq. (1) con-
verge with conventional pulse theory. That is, one must 
be able to recover asymptotic results pertaining to the 
approximate equation 
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When V2 → 0, the coordinate change in Eqs. (3a) and 
(3b) becomes     – V and    , and envelope u 
transforms as u(,)   exp[–isV + is(V2/2 + V)] 
u(,). Similarly, when VV0 → 0 the velocity combina-
tion rule, Eq. (4), assumes Galilean form W   V + V0. 
These results illustrate that convergence is a subtle notion, 
in that ∂2u/∂2 → 0 involves more than just simply    
0 [2]. In fact, the SVEA corresponds to a simultaneous 
multiple limit applied to Eq. (1) solutions. When  → 0, 
 → 0, and ( +/2) → 0, one recovers  
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FIG. 2 (color online). Reshaping of perturbed (a) bright [with  
= –10–3] and (b) dark [with  = +10–3] pulses toward asymptotic 
stationary states (horizontal bars denote theoretical predictions) 
when  = 1.0. Initial conditions are exact solitons of Eq. (10) 
with 0 = 1.0. 
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for the forward solitons in Eqs. (6a) and (6b), where 
(,)   – W   (– ) –  since W    + . The 
CW solutions, and predictions of their linear stability, also 
reduce to the desired results [14,15]. Solitons (11a) and 
(11b) are approximate solutions to Eq. (1) and exact solu-
tions to Eq. (10); when expressed in local coordinates 
(loc, loc) = ( – , ), they satisfy the canonical NLS 
equation [5,6]. One can thus regard (loc, loc) as defining 
a unique reference frame in which pulses with  = 0 are 
“at rest”. Importantly, no such local time frame exists for 
the solutions of Eq. (1), because intrinsic velocity V0 de-
pends upon intensity 0.  
    Extensive computations, using developments of earlier 
methods [16], reveal emergence of propagation-invariant 
pulses when using solutions (11a) and (11b) as initial 
conditions for Eq. (1) (see Fig. 2). These simulations, in 
combination with inverse scattering theory [17] and the 
Vakhitov-Kolokolov integral criterion [18], provide 
strong evidence that solitons (6a) and (6b) are robust enti-
ties with wide basins of attraction. 
    In conclusion, we have analysed a generic nonlinear 
wave equation describing spatiotemporal dispersion. Its 

mathematical structure permits one to draw parallels with 
special relativity (distinct from a reintroduction of the 
Lorentz covariance of Maxwell’s equations [3]).  For sec-
ond-order spatiotemporal dispersion, any combination of 
signs and sizes of dispersion coefficients leads to either 
relativistic or pseudo-relativistic characteristics of all sys-
tem solutions (and those of the corresponding linear prob-
lem). It is intriguing to note that conventional pulse theory 
can be interpreted as the ‘low speed limit’ of the more 
general model (similar to Newton’s laws of motion 
emerging from relativistic mechanics). Corrections to 
several conventional predictions of wave characteristics 
(demonstrated by , 2 and W2 terms in soliton solu-
tions) may be experimentally observable. Parameters  
and  are independent and, in distinct physical contexts, 
vary over orders of magnitude. For the optical context 
considered [10],  can easily be O(||–1). In optics, higher-
order temporal dispersion effects can also arise. Here, we 
accounted only for leading terms of distinct type. This 
permitted exploration of distinct interplays, and a focus 
on general contexts and universal wave equations. We 
thus believe our results will have application in descrip-
tion of spatiotemporal wave phenomena in other linear 
and nonlinear contexts.  
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