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Abstract
The interaction of self-localizing and self-stabilizing

wavepackets with interfaces is a fundamental nonlinear
wave phenomenon. Indeed, interfaces play a crucial role
as boundary conditions in a wide class of problem, rang-
ing from guided-wave optics in photonic architectures to
water waves interacting with coastal structures.

We consider scattering of spatial optical solitons at the
planar boundary between dissimilar nonlinear materials.
Our approach allows arbitrary angles of beam incidence,
reflection and refraction (relative to the interface); con-
ventional theories demand these angles (in the laboratory
frame) be near-negligibly small. A range of analytical
and semi-analytical methods is deployed in both domains,
and respecting solution continuity at the boundary allows
the derivation of a universal Snell’s law governing beam
refraction. Numerical analysis, in combination with fast
computational techniques, tests the validity of theoretical
predictions. Given the universality of soliton phenomena,
we expect the methods developed here to be applicable in
other nonlinear-wave based systems.

Conventional (paraxial) theory
A light beam impinging on the boundary between two

dissimilar dielectric materials is a fundamental optical ge-
ometry. After all, the single-interface configuration is
an elemental structure that facilitates more sophisticated
device designs and architectures for a diverse range of
applications. The seminal papers of Aceves, Moloney
and Newell [1,2] in the late 1980s considered a sim-
ple scenario, where a spatial soliton was incident on
the boundary between two different Kerr-type materials.
Their intuitive approach reduced the full complexity of
the electromagnetic interface problem to something far
more tractable, namely the solution a scalar equation of
the inhomogeneous nonlinear Schrödinger type. Over
the past two decades, investigations of single [3] and
multiple-layer [4] interface geometries have paved the
way to deeper understandings of how light behaves inside
patterned nonlinear structures such as coupled waveguide
arrays and photonics crystals.

It is true to say that the analyses of Aceveset al. [1-
6] and others [7-10] have provided an enormous level

of insight, and they have heralded new research fields
in nonlinear photonics. Oblique incidence effects (see
Figure 1) are central in the understanding of nonlinear
wave-interface interactions [11,12]. For instance, one can
envisage the ingoing spatial soliton being arbitrarily in-
clined with respect to the boundary, either through chang-
ing the orientation of the light beam (relative to the inter-
face) or by rotating the waveguiding structure itself (rela-
tive to the beam). It is thus desirable, essential even, for
theoretical models to capture this type of intrinsicangular
characteristic. Unfortunately, the ubiquitous assumption
of slowly-varying envelopes renders traditional (paraxial)
modelling applicable only when angles of incidence, re-
flection and refraction in the laboratory frame are negligi-
bly (or near-negligibly) small.

Helmholtz (nonparaxial) theory
In 2007, we proposed the first scalar model of spa-

tial soliton refraction that is valid across the entire an-
gular range [11]. In a scalar environment, the beams-at-
interfaces problem comprises two main themes:propaga-
tion andmaterial aspects.

Propagation aspects
Our preliminary research concentrated on developing

the propagation formalism by deploying Helmholtz spa-

Figure 1: External spatial soliton refraction in the
laboratory frame, whereθt > θi



Figure 2: Refraction of spatial solitons at a nonlinear
interface between power-law type media with similar
nonlinearity exponents (the refractive index varies as
δn2

NL ∼ Ip). The incidence angle in each part is 30◦

(well beyond what is attainable from paraxial theory
[1-6]). Top: p = 1/2; middle: p = 1 (Kerr); bottom:

p = 3/2.

tial soliton theory. The angular restriction of paraxial
models was lifted, and a manageable envelope equation
emerged.

For simplicity, Kerr-type materials were considered
first; these have the most straightforward nonlinearities,
where induced refractive-index changes are directly pro-
portional to the local light intensityI. By deriving exact
analytical solitons, and enforcing solution continuity at
the interface, a Snell’s law was obtained for bright [11,12]
and dark [13,14] Kerr beam refraction. At first glance,

this new law strongly resembles the classic refraction rule
for plane waves at the interface betweenlinear media.
However there appears an additional multiplicative fac-
tor that captures the interplay between finite-beam effects
and medium discontinuities. Extensive numerical simu-
lations tested, and confirmed the validity of, theoretical
predictions.

Material aspects
Our more recent research has been geared toward sys-

tematic generalizations that describe novel material con-
figurations. The first steps in this direction have consid-
ered scenarios where the intensity dependence of the re-
fractive index is preserved across the boundary, but this
dependence is non-Kerr in character. The simplest gen-
eralization to consider is that of arbitrary power-law ma-
terials (i.e., nonlinear refractive indexes likeδn2

NL ∼ Ip,
where0 < p < 2, andp = 1 describes the Kerr ef-
fect). Media falling into this category include some semi-
conductors (e.g., InSb and GaAs / GaAlAs), doped filter
glasses (e.g., CsSxSex−2) and liquid crystals [15,16]. In
this regime, we have uncovered new qualitative and quan-
titative phenomena (see Figure 2).

We are currently analysing, for the first time, arbitrary
angle effects in combination with cubic-quintic interfaces
[17,18].

Generalized interfaces model
It is also possible to construct a scalar model to de-

scribe the scattering of spatial solitons incident on the
boundary between dissimilar nonlinear media. We con-
sider a TE-polarized time-harmonic scalar electric field
E(x, z, t) = E(x, z) exp(−iωt) + c.c., wherex and z
are the spatial coordinates,t is the time coordinate, and
ω is the angular frequency. If the spatial part of the field
varies slowly (in the transverse direction) on the scale of
the free-space optical wavelengthλ, thenE(x, z) satisfies
a Helmholtz equation on each side of the boundary:
(

∂2

∂z2
+

∂2

∂x2

)

E(x, z) +
ω2

c2
n2(E)E(x, z) = 0, (1)

wherec is the vacuum speed of light. The total refractive
indexn is routinely taken to be the sum of two terms so
thatn2

j = n2

0j + δn2

NLj(E), wheren0j is the linear index
of mediumj = 1, 2 (which labels the two domains see
Figure 1) at frequencyω, andδn2

NLj(E) the small field-
dependent correction on each side of the interface. In con-
trast to all our previous analyses, theδn2

NLj(E) functions
may be havedifferent intensity dependences. The carrier
wave component ofE can be factored out according to



E(x, z) = E0u(x, z) exp(ik1z), so thatz andx are the
longitudinal and transverse coordinates, respectively,E0

scales the field amplitude,k1 = (ω/c)n01, andu(x, z)
is the dimensionless envelope, [equally, one could have
factored out the complex-exponential factorexp(ik2z)].
After substitution into Eq. (1), it can be shown thatu
satisfies the inhomogeneous equation,
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Here ζ = z/LD1 and ξ = 21/2x/w0, whereLD1 =
k1w

2

0
/2 andw0 are the diffraction length and waist of a

reference Gaussian beam. Mismatches in the linear re-
fractive index are described by∆ ≡ 1 − n2

02
/n2

01
, and

the nonparaxial parameterκ = 1/(k1w0)
2 = ε2/4π2n2

01

quantifies the (inverse) beam width. The validity of
Helmholtz modelling requiresε ≡ λ/w0 ≪ O(1), so
that beam waists are much larger than the free-space light
wavelength. Hence,κ ≪ O(1) is always taken to be a
small parameter throughout. The Heaviside unit function
H(ξ, ζ) is defined so thatH = 0 (+1) in domain 1 (2).
The functionsf1(|u|2) andf2(|u|2) describe the normal-
ized nonlinear response on either side of the interface.

Snell’s law: theory and computation
Generalized Snell’s law

By exploiting quadrature techniques that we estab-
lished in previous publications [19], Eq. (2) can be inte-
grated exactly and solitons obtained (in principle) on both
sides of the material boundary. These solutions provide a
nonlinear basis for deriving a generalized Snell’s law:

γn01 cos θi = n02 cos θt. (3)

Here,γ is a function that depends uponκ (finite trans-
verse effects), the linear mismatch∆, and the two
beam phase-shift parameters (which explicitly incorpo-
rates nonlinearity mismatches). Crucially, all our earlier
analyses are recovered from this universalγ.

Simulations of soliton scattering
The universal Snell’s law embodied in Eq. (3) has

been verified by direct numerical integration of Eq. (2)
[20] (see Figure 3). A variety of technologically impor-
tant material combinations has been considered, includ-
ing dissimilar power-law materials [δn2

NL1(I) = α1I
p1

andδn2

NL2(I) = α2I
p2, wherep1 6= p2] and Kerr/cubic-

quintic materials [δn2

NL1(I) = α1I and δn2

NL2(I) =

Figure 3: (a) Extensive computations have tested the
validity of Snell’s law (3), here for Kerr/cubic-quintic
interface scenarios. (b) Goos-Hänchen shifts can occur
when incidence angles are close to the critical angle.

α2I + v2I
2]. In both cases, we find very good theory-

numerics agree-ment across a wide range of parameter
regimes.
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