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FORMULA SHEET 1

BASIC ALGEBRA

Equations and identities
Equations are usually only true for particular values of the variable(s) involved

Identities are equations that are true for all values of the variable(s) involved
An identity has the left-hand side of the equations identical to the right-hand side of the equation

Examples of identities are (x+2) =x"+4x+4 (true for all values of x)
-a? =(x-a)(x+a) (true for all values of x)
x* =yt =(x-y)(x+y) (truefor all values of x and y)

Inverse functions

For y= f(x) weneed f to bea one-to-one function to define the inverse function f~' such

that x=f~'(y)

Changing the subject of the formula from y= f(x) to x= f '(y) can give the form of the
inverse function

A sketchof thecurve y = f “'(x) can be obtained by reflecting the curve y = f(x) in the liney = x

Indices and logarithms

Intheterm S5a°®, 5 is the coefficient, a is the base, and 3 is the index. exponent, or logarithm to base a
In general, if a” =N then n=log, N

Three basic laws of indices Three basic laws of logarithms
a"a"=a™" logAB =logA +log B
g =g log2 = log A - log B
a B
(aﬂ')” =q™ log A" =nlogA

These sets of laws are related by identifying A=a" and B =a"

We also have a” =1 logl =0
I .
LI log, N = %8
a” log, a
ar = (ﬂ/;)" or g]a"‘ : (the rule for changing from base a to base b)

Natural logarithms: If ¢" =N then n=log N , alsowrittenas n=InN
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POLYNOMIALS
Polynomial evaluation by nesting
azx’ +a,x+a, = (aa.r-ba, W +a,

axt+ax’ +axtay= [(a,.t+a, )x+a,lx+an

a,xt +a,.\" +a,x1 +a,t+a, ={[(a,x+a,)x+a,l\'+a,]x+ a,

Factor theorem

If f(x) is a polynomial and substiniting x = a gives zero, i.e. f(a)=0,then (x—a) is
a factor of f(x)

Polynomial division

If the highest power of x in the numerator is equal to or greater than
the highest power of «x in the denominator then an algebraic fraction is said to be improper

Three steps for polynomial division:
(i) Adda multiple of the denominator to the top ling to give the term with the highest power of x
(it ) Compensate for any new terms that have been added to the top line

( iii ) Write the result as 1wo algebraic fractions. If one still has an improper algebraic fraction then go
back to step (i)

Completing the square (quadratic equations)
Consider the general quadratic equation ax® +bx+¢ =0

x* +bx +o= 0

2 2
x’+b.\:+(£) +c= (2)
2 2

When a=1, ( b)’ (b)’
X+— = -] -c
2 2
2
X+— =% [2) -c
2 2
ax? +bx +c= 0 .

When a=1, ( b)‘ (b )’
al x+— = a -C
b

Factorising n quadratic expression

When ax? +bx+c=0,
positive then have real different roots

If discriminant b? —dac is zero  then have real equal roots
negalive then have no real roots

If discriminant b* —dac = 07,1?,27,3, ... (i.e. a perfect square) then expect simple linear factors
When a=1, factorisation ' by inspection * is straightforward:

X tbrtc= (v~aNx~B) . where a+f=-b and afl=c

b+ Vb —dac

When a=1, ax1+b.r+c=a(x—a')(x—,8). where a.ﬂ=_ 3
a

Finding partial fractions

In general, there are three steps in finding partial fractions.
However, you may only have to do step (iii), for example.

(i) Ensure that the given expression involves only proper algebraic fractions.

Otherwise, perform polynomial division until one hus only proper algebraic fractions
{ii ) Factorise the denominator(s) as far as possibie
( iii ) Express in terms of partial fractions using the following rules:

Expression in the denominator Fuorm of partial fraction(s)
. A
Linear factor (ax+b)
ax+b
Repeated factor (ax+b)? A + B .
. ax+b (ax+b)”
Ax+B
uadratic factor ax! +bx+c _
2 ( ) ax* +bx+c

(that does not

factorise)
where A and B are conslants

to be determined
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Binomial theorem (positive integer index n)

(a+b)' =a" + na""b-{-’l_(";:_ga"‘lb2 +£(n__|;_|(_ﬂa"‘]b-‘ 4ot b"
where pl=p(p-1)p-2)..2.1, eg 4!=43.2.1=24

. .
For example,

.

(t+x) =1 +nx+"("2:l)x’+"("-2f"—2)x“ + -

-+ x"

When n is not too large, one can read the binomial coefficients from * Pascals’s triangle *

1 2 |
1 3 3 I
1 4 6 4 1
| 5 10 10 5 1
1 6 15 20 15 6 ]
| 7 21 35 35 2! 7 1

For example,

{a+b)® =a® + 6a’b +15a*b’ +20a’b* +15a°b’ + 6ab* +b°

TRIGONOMETRY

Circles and angles

Area of circle (with radius r), A=nr’'. Circumference of circle, C=2nr

| revolution = 360° = 2rradians , where angle (in radians) = (length of circle arc) /¢

. Length of circular arc =1 8 , and Area of sector of a circle = (1/2) r*0 , where 0 is in radians.

FORMULA SHEET 5

Special triangles

General triangles

Sine Rule:

a b c

CosineRule: a2’ = b2+ c? —2bccosA
b?= a® + ¢? ~2accosB
¢?=al+b?-2abcosC

Recall also that: A+B+C=180°

Evaluation of cos 8, s5sin® and tan @ (any angle 6)

cos@=x/r
Foranyangle®, sin@=y/r

tanf =y/x
! Pey)
SIN | ALL .
|, summarises where the ratios are positive, i.c. gives the sign of the trig ratio
x
TAN | COS

Consideration of the associated acute angle a gives the magnifude of the trig ratio

y ¥ ¥ .
L/ P N
\d 0y @, 3
0 x 0 " a t
r

The 3 main trig ratios

For a positive acute angle a , cosa= A/H H

90-a
sina= O/H 0
o

tana= O/A
Pythagoras theorem: Al+ O =H? A
Complementary angles:

We also have:

cos & = $in (90°—a) and sin o =cos (90°-a)

Graphs of cos 8, sin6 and tan 6

cos @ sinf tand

VNN
SVARVEREY IRV

—-1<cos@ <1,
period of 2n

bl
~a

—-1ssin@<l, tan & has unlimited range,

period of 2n period of ®
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Graphs of related functions (a, k, o are constants )

has period 2n and amplitude a  [similarly for asiné)
is cos@ shifted upwards by a [similarly for a+siné]

» cosk@® and sink& haveperiod 2r/k ; tank@ has period n/k

= acosé

e a+cosf

s cos(f8-a)
o cos(kf-a)

is cos @ shifted right by a [similarly forsin(8 — ) ,tan(8 - @) )
has period 2n/k andis cosk@ shifted right by amount a/k
{similarly for sin(kf-a) )

Principal and Secondary Values

In solving the equations sinf =5 and tan@ =1 (where s and ¢ are constants),

In solving the equation

z
2
{i.e. inthe 1" and 4" quadrants)

the principal value (PV) is the solution —-% £0<

cos@ =c (where ¢ isaconstant),

the principal value (PV) is the solution 0<6<nx
(i.e. inthe 1" and 2™ quadrants)

For any of the ahove equations, a secondary value (SV) may exist in the other quadrants

General solutions

PV +2nr
SV +2nw
cos@ =c has general solution 8 =%PV + 2nx

sin@ =s has general solution 8 = {

tanf =t has general solution @ =PV +nrx
(where n=0,%£1,£2,%3,...)

Inverse trig functions
ﬁﬂt"f' 4

Hetan! 5
g

Principal Value 0@ < Principal Value -% <6 S% Principal Value —g <0 S’E{
@ is the angle whose @ is the angle whose @ is the angle whose
cosing is .t sine is x tangent is x

Small angle approximations ( when 8 <<| and 8 measured in radians )

62
sin=60 , tan@ =8 , cose=l-—2—

Trig identities and further tvig equations

anf = sind
cos 8
(reciprocal trig functions)
cos 8+ sin’6 = | sech=1/cos8
1+tan® @ =sec? @ where cosecd = 1/sin @
cot? 8 +1=cosec’d coté@ =1/tan@

For example, solving equations acos@+bsin’@=c , wherea, b, ¢ constants ,

substitute sin’@ =1—cos’ @ to give a quadratic equation in cos@ . s

For example, solving equations acos?@+bsin@ =c , wherea, b, ¢ constants,
substitute cos’@=1-sin’@ 1o give a quadratic cquation in sin8 .

(compound angle formulae)

fand+tanB
I-tanAtlan B

sin (A+B) =sin AcosB+cos AsinB tan(A + B) =
sin (A —B) =sin AcosB-cos Asin B
cos (A+B)=cos Acos B-sin AsinB

cos (A - B) =cos A cos B +sin A sin B tan(A - By = 1204 —tan B

1+tan Atan B

For example, solving equations ~ acosé +bsind =¢ , wherea, b, ¢ constants :

acompare acos@ + bsind with a compound angle forinula to write the lefi-hand-side
as rcos(@xa) or rsin(@ta) ,where r, @ uare constants

* match the signs of coefficients a and b with those of a compound angle formula
to give a inthe 1” quadrant

Note that a graph of acosf +bsind versus @ would have amplitude §g”and phase shift o

t-substitution method : an alternative method of solving acos@ + bsin@ =¢ is to

»

2

. 2t
7 and sinfd=——
t 1+1¢

o let r=ta|'|g to give cosé =
2 |

e substitute for cos@ and sind and rearrange resulting equation into a quadratic in ¢

» solve the quadratic equation for ¢ and re-express in terms of &
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‘Trig identities and further trig equations — continued

(double angle formulae)

sin2A = 2sinAcos A
cos2A =cos’A—-sin? A
l =1-2sin? A

=2cos? A -1

For example, solving equations

tan 2A = o
L I-tan"A

acos28 +bsiné =c¢

2tanA

. where a, b, c constants :

substitute  cos26 =1-2sin*8 to give a quadratic equation in sin @

For example, solving equations

acos28 + becosf =c

. where a, b, c constants :

substitute cos28 =2cos’ @ ~1 1o give a quadratic equation in cosé

cos? A = (1 +c:sZA)
(haif angle formulae) ! = 2
sin? A = 12€0524)
2
(sum formulae - “factorisation’’)
(product formulae)
IsinA +sinB =2sinA+B\.osA-B N
) ‘ A+B . AEB sin AcosB=+-2—[sin(A+B)+sin(A—B)]
sin A —sinB = 2cos sin \
Al AEB cosAcosB=+E[cos(A+B)+cos(A—B)]
cos A + cos B = 2cos cos 3 I
_A+B _ A-B sin AsmB=-§[cos(A+B)—cos(A—B)]
cos A —cos B =-2sin 3 sin

HYPERBOLIC FUNCTIONS

FORMULA SHEET Y

Basic Definitions

In a Maths (A exam, you would only be asked 1o work from the following three basic definitions :

e*+e”™ . e'—e”" sinhx
coshx= i——) . sinhx= Q , tanh x = ———
2 2 cosh x

with an "h" appended.

Notes  « Hyperbolic functions are closely related to the trig functions
 The name of each hyperbolic function comes from that of the corresponding trig function
For example, cos becomes cosh , sin becomes sinh , etc

y=cosh x 3

Graphs of coshx , sinhx and tanhx

y=tanh x

Inverse hyperbolic functions

Graphs
y
]
) y=cosh* 1
] /
1 2 3 *

cosh™ x is the number y20
that satisfies coshy =x

Evaluation
cosh™ x= ln(.\'+ Jx? - l)

(where x21)

sinh™ x is the number y
that satisfies sinh y=x

sinh™ x = In(x+w/x2 + I)

y

2!
l{/y:unﬁ' x
. 'R
A
/Y
tanh™ x is the number y
that satisfies tanh y =x

tanh™ ,t=lln I+x
2 (l-x

A

(where 1xl<])
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Hyperbolic function identities

- 2
cosh? x—sinh’x =1

(reciprocal hyperbolic functions)

sech x =1/cosh x

I —tanh® x =sech’x where cosech x = 1/sinh x
coth? x—1 = cosech’x cothx =1/tanh x
sinh 2x = 2sinh xcosh x
cosh 2x =cosh?® x +sinh’ x 2tanh x
. tanh 2x = —————|
=1+2sinh’ x 1+tanh® x
=2¢osh’xr-1
COSh’ x= m
2
- 2
sinh? x = (=1 +cosh2x))
2
VYECTORS

Introduction

* A scalar quantity has magnitude only. A vecror quantity has both magnitude and direction

*» The Cartesian axes of reference OX . OY and OZ are chosen so that they form a right-handed set,
whereby OX rotates towards OY in a clockwise manner when one looks along OZ

1 0 0

*Thesymbols i=|0(,j=11 [, k=[0] denote unit vectors in directions OX, OY and OZ, respectively

0 0 1

Vectors introduction — contimzed
a

e A3D vector a=|[a, | can be written in terms of unit vectors i,j.k as a=aqji+a,j+ak

a,

o The magnitude of vector a=aji+a,j+ak is lal= Ja,! + a,2 + a,z

: . o . oa_ A
o The unit vector in the directionof a=aji+a,j+ak is a= 3l

al

Position vectors

o The position vector r of a point P with Cartesian coordinate (x, M z,) extends from the origin Q to
the point P

« The position vector of the point dividing the line AB in the ratio m : n is r= %
where a and b are the position vectors of points A and B, respectively '

* The position vector of the midpoint of the line AB is r= atb

» The position vector of the cenrroid of the triangle ABC is r =£—+l;# .

where a ,band c are the position vectors of points A, B and C, respectively
Scalar product

The scalar product (or “dot product”) of vectors a=a,i+a,j+a,k and b=bi+b,j+bk
is

a.b=lallblcos@
=ab, +a,b, +a,b,

where 8 is the angle between a and b

3

a.
|

|

The resolved part (or “projection”) of vector a on vector b isthen lalcosd =

-

Vector product

The vector praduct (ot “cross product”) of vectors a=a,i +a,j+a,k and b=bi+b,j+bk

has magnitude Ila>d)l=|allblsinel , where & isthe angle between a and b

and direction perpendicular to both a and b suchthat a, b and axb form a right-handed set

i K
a, a a, a o, a
axb=la, «, a)=il* |-j|l"' l+k|*
b: b: b: bl b.‘ bl b.‘ bl bZ
=i (uyb, —a,b,)-jlab, —ab,)+k (ab, —a,b,)

T BT N NPT TS L e

s e ren.
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COMPLEX NUMBERS

Introduction
« The purely imaginary number j = J=i, whereby jl=-1, j*=-j and j'=I
« Mulliplying a position vector by a factor of ; rotates the vector by +90° (anti-clockwise direction)
s Acomplex number z=a+ jb has real part = a and imaginary pm'1=' b
» The complex conjugate of z=a+ jb is a—jb
(a+ jbYa- jb)=a® +b*

» The product of two complex conjugate numbers is always real since

» Complex numbers z, =a+ jb and z, =c+ jd are equal if a=cand b=d

Polar and exponential forms

To express a complex number in polar form : z=a+ jb=r(cos@ + jsin 9)'

« Sketch the position vector representing a + jb in the complex plane (Argand diagram)

¢ Draw the right-angied triangle that involves the associated acute angle o (FORMULA SHEET 5)

r=lzl=va® +b?

o The argument of £ is € = arg z = ‘angle made with the positive direclion of the real axis’

e The modulusof z is

To express a complex number in exponential form : lz =a+ jb=r(cos8+ jsin@)=re jil

» Express the complex number in polar form

o Use the values of r and @ from polar form (where & MUST be in radians)

The complex conjugate of  a+ jb = r{cos@+ jsing)=re je

is  a-jb=r(cosf- jsing)=re /¢

The  logarithm of z=rci9 is Inz=ln(rcj9)=lnr+j6

FORMULA SHEET 13

Mutltiplication, division and powers (complex numbers in polar form)

z, = r;(cos®, + jsin8,)

d z=r{cos@+ jsin6)]
2, =ry(cos8, + jsin8,) o [z=rfcos6:+ jsino)

If

then ,
by considering the exponential forms of z,,z, and z,

2,2, = ryr[cos(8, + 8,)+ jsin(, +8,)]

1" and 2 laws of indices =»

5 i feos(, — 6, )+ jsin(8, - 6,)] :

L n

3" law of indices =

|z" =r"(cosn@ + jsin ne)l

(DeMoivre's theorem)

Roots of a complex number
Any real or complex number can be written in the form :

rc/'(a"z"z, where n=0,il,i2.--.

z=re’® =
whereby the m" roots of z aregiven by :

g+2mr
m

I 1 j¢ )

" =r"e

In polar form, one finds the m distinct m™ roots of z are thus:

1 1[ (0 ernJ .. (9 Zﬂ'll)]
™ =r=|cos| —+—— [+ jsinl —+
m m m m

l[ (9 360;:"] . (9 360n° ]]
=r"|cosl —+—— |+ jsinj —+ R

m m m n

where n=0,1,2,...,m—1
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ORDINARY DIFFERENTIATION

Chain Rule (for a function of a function)
If y=y(u(x)) then dy _dydu
. dx dudx

Product Rule
If y=u(x)v(x) then y =u'v+uv’ (dashes denoting differentiation

with respect to x )

Quotient Rule

’ ’
If y= u(x) then y'=—u v—zuv
v(x v

Logarithmic Differentiation

u({x)v(x)
w(x

For example, if y= then Iny=lnu+lnv-Inw ,

1d td d d
1dy _1du 1dv_194% Rer differentiation) .

ydx uwdx vdx wdx

dy [Idu 1dv ldw]
—_— = e e o e e o e

therefore
dx udx vdx wdx
ang Gy _uvlldv 1dv 1dw
dx wludx vdx wdx

FORMULA SHEET 15

ORDINARY DIFFERENTIATION (continued)

Implicit Differentiation

dx

Parametric Differentiation

dy

then d—y =d4é
dx  dx

dé

Classification:

When y is only given implicitly in terms of x:

For a givencurve y=Ff(x) .

d dy .
then —|(y?}=2y-< (usin
¢ dx(y) Yax (sine

f(x.y)=0,

then to find dy differentiate each side of the equation with respect to x

and solve for iy_ . For example, if f(x,y)=0 hasaterm y?

the Chain Rule).

x=x(8)

When x and y are given by parametric equations, such as .
y=y(8)

BTN\

If one sets Y:ﬂ then LZ=1 ﬂ- =48
dx dx? dx|dx ) dx

dé

Turning points and their classification

. 0 gives the
dx

positive

is zero

X- ie
negative

x-coordinates of turning points.

The original equation y =f(x) can then be used to find their y-coordinates.

for a minimum

for a point of inflection

for a maximum
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STANDARD DERIVATIVES
f(x) () f(x) f/(x) .
o nx ™ (g n[gx)]™ g’x)
e e a* a"lna @>0)
I l 2,
Inx - (x>0) In g(x) —g(x) (x>0
X 8(x)

sin x cos X sinh x cosh x
€Os X -sinx cosh x sinh x
tan x see?x tanh x sech’x
cosec X ~ cosec x cot x cosech x —cosech x coth x
sec x sec x tan x sech x —sech x tanh x
cot x - cosec’x coth x - cosech® x

! -l<x<l| !
sin”'x N (-1<x<h sinh™'x a1

! l<x<l ' i

cos™'x - \ﬁ:‘?‘ (-1<x<h cosh™'x . (x>1)

| | \ I
tan”'x T+x? tank~'x —< (t<x<h

cosecx = 1/sinx . secx = 1/cosx cotx = | /tanx

where

cosech x = 1/sinh x ,

sech x = I/cosh x coth x =1/tanh x

FORMULA SHEET 17
PARTIAL DIFFERENTIATION

Meaning of Partial Differentiation

When a given function is of nvo or more independent variables, £( x,y) for example,

then ﬂ means a while treating y
ax dx
as a constant

af df . .
—_— means W while treating x
as a constant

Chl means i B_f and Gl rr;eans i if-
X’ x| dx ’ dy’ dy{dy

also _aigi ﬁ :_-i,a_f = azf
dxdy dx|dy Bylax dydx

Chain Rule (for a function of a function)
*_Ndu A A
dx dJudx.

For f(u(x,y)) . a_y—au dy

Product Rule
of dJu +u ov

If f(x,y)= . X, th —_—= —
(x.y)=u(x,y)v(x,y) then Ix axv I
and g—;:g—;v-i-u%
Quotient Rule .
I f(xy)=2ty) then =2 "7
v(x.y) v

(dashes denoting partial differentiation with

respect to x , and similarly for y)

et e e men R



FORMULA SHEET 18
INTEGRATION

Techniques of integration

Functions of a linear function of x

For integrals of the form I f(ax+b)dx , where a and b are constants ,

du du
Let w=ax+b . then —=a and hence dv=— , giving:
dx a

Jf(ax+b) dx =“I:If(u) du

JAC

Integrals of the form J I
x

Letting u= f(x) gives %:f'(x) and du= f(x)dx , thus:
= -

_[Md.\w-'fldu:lnlul«l-c
S u

=l f()1+C

Integrals of the form “[ (x) ]" f(x)dx

e, .
Leuing u = f(x) gives ﬁ=f (x) and hence die = f'(x)dx , thus:

n+l n+l
“f(.t) ]nf'(.\') dx =Iu" de=2—4cC =[ﬂ;)]+ C
n+l ntl

For example, n=1 gives

2 2
_[f(.l‘) f'(")d-Y=I"d“=%'+C= [f(zx)] +C

FORMULA SHEET 19

Techniques of integration — continued

Inlegrntim.l by parts

Iu ﬂ de=uv - J ﬂ vdx
dx dx

This technique is useful for integrals of the following four forms:

| x"{::;l;‘;} ds . Gi) o Je"e™ dx .
T T T 1
[} ﬂ " ‘dl
dx dx

i) fx" Inax) dx (iv) Ie"x{smbx}dx
cosbx

Tt Tt
Ll " [ av
dx ' dx

Integration using partial fractions

For example, given a proper algebraic fraction whose denominator is factorised as far as possible,
and whose numerator cannot be written as a multiple of the derivative of the denominator,

then FORMULA SHEET 3 gives the prescription for writing this algebraic fraction in terms of
partial fractions that can be individually integrated.

Integrals of the form * Isin pxcosgx dx

The product formulae from trig identities give three results for dealing with products of
sin px and/or cos gx :

Isin A cosBdr= %fsin(A +B)+sin(A — B) dx

fcosA cosBdx = %Icos(A +B)+cos(A - B) dx

Isin AsinBdx = —;chos(A + B)-cos(A —B) dx

e e B

s
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STANDARD INTEGRALS |
fx) [rexus f(x) [ty
) ’
x L )" s’ | [gw]™
n+l n+l
! g'(x) '
- Inixi = In Ig{x)I
x n £(x)
e . a 2 (a>0)
Ina
sin x - Cos X sinh x cosh x
€os x sin x cosh x sinh x
tan x - Inlcosxi tanh x In cosh x
X X
cosec x Inftan— cosech x In|tanh —I
2 2
sec x In Isec x + tan x| sech x 2 tan~ &
sec’x tan x sech?x tanh x
cot x In Isin x! coth x In Isinh xI
.2 x  sin2x sinh2x  x
sin'x 177, sinh’x 3
. x  sin2x sinh2x = x
cos’x Y77 cosh’x 1 3
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The following nine standard integrals are often used after two manipulations of more
complicated integrals : :

o completing the square to find an expression like c(t+ d)? £a’

« and, linear substitution sachas n=x+d

STANDARD INTEGRALS I

f(x) If(x)dx f(x) jf(x)dx
{ 1 x 1 1, la+x
= —t - >0 5 —_—
Tl 2 an 2 (@>0) P 2a|n p— ©0<ixl<a)
! I X-a
xt—a? —In}- (x> a > 0)
2a |x+a

sin?' 2 (racx<a) ! x+val+x?

?_x? 2 ) In (a>0)
a’-x AP a
i

X+1/Xz—nz.

a

(x>a>0)

— 3 a
a ki

" al[ o Lfx) xfalex
a’-x? a’ [Si“-l[i}"‘ a’—x’,] al +x° —{sinh '(:]+—1—]
a
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ORDINARY DIFFERENTIAL EQUATIONS (ODE's)

Introduction

d’y d)' ) 1
= 4| == | = x'{is an example of an ordinary differential equation since it contains only

@ | dx

y

ordinary derivatives such as o and not partial derivatives such ass'ﬂ The dependent variable is y
X 29

while the independent variable is x (an o.d.e. has only one independent variable while a partial

differential equation has more than one independent variable).

It is a second order equation since the highest order of derivative involved is two i.e. the presence of
(l ?

the term.

de?

An o.d.c. is linear when each term has y and its derivatives only appearing to the power onc. The

d
appearance of a term involving any product of y and d—i- would also make and equation non-linear.

d 3
In the above example, the term (-d—i makes-the equation non-linear.

The general solution of an n™ order 0.d.e. has n arbitrary constants which can take any values.
In an Initial value problem, one solves an n™ order o.d.c. to find the general solution and then applies n

houndary conditlons (“initial values/conditions™ to find o particular solution that does not have any
arbitrary constants.

Solving O.D.E.’s

y= I flx)dx by “direct integration”

dv
. |—== b _)
dx S

dy . dy
. :1;=f(.\)g(y) - [—=

x)d
g(y) Jreods

by “separation of variables”
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Definition M(x,y) =3x’+ xy is a homogeneous function since the sum of the powers of x ond y in
each term is the same (i.e. x! is x to the power 2 and xy=x'y' giving total power of 1+1=2).
The degree of this homogeneous function is 2.

dy _M(x,y)
dx N(x,y)

where M and N are homogeneous functions of the same degree

Change the dependent varinble from Y to v where ¥y =vx then

d dv M ,f,

LHS = 2. X—+ Vv and RHS =(—‘y)' becomes function of V only.
dx dx N(x,y)

Solve the resulting equation by separating the variables v and X, .

then re-express the solution in terms of x and Y.

. . dy _ >
Note that this method also works for equations of the form Z =fl=|
X

\

First order linear o.d.e. — use the integrating factor method

. % + P(x)y =0Q(x)

jrumx

Multiply the eqoation by integrating factor [F =€ to give

%(IF y)=IF Q(x). Then integrate both sides with respect to «,

giving IF y=JIF Q(x) dx. Finally, divide by IF toget y.

. % + P(x)y=0(x)y"| Bernoulli’s differential equation

Change the dependent variable from ¥ to Z where Z2=Y
This makes the equation linear and we can use the integrating factor method.

Dividing by y" gives L_Q + Py =0(x)
y" dx

ie. _l_d_z+ P(x) z
l-ndx

=0(x).

( using %:(l—-n)y"‘% )
X

-

et e T T SN
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. ,P(.t. y)dx+ Q(x,y)dy =q [this method of solution will not be examined)

If -aﬁ = ?-Q then the o.d.e. is said to be exact.
dy ox
ou
This means that a function u(X,y) exists suchthat  du = g—uit + a—dy,
x y

=P di+ Q dy=0.

Ones solves a—u= P and -a—u= 0 twofind u(x.y).
ox dy

Then du = 0 gives u(x,)’)=c0n:taht (this is the general solution of Pdx + Qdy = 0).

dly  d . .
s |a—=+b—+ cy =0| Second order linear o.d.e. with constant coefficients a.b,c

dx!

It is called a homogeneous equation because the RHS = 0.
Setting y = A ™ gives am®* +bm+c¢=0 (the “‘auxiliary equation™)

Then m=§1—(—-bt\/b’-4ac) gives
a

i) real different roots my , My and y=Ae™ + Be™
or i) real equal roots m;=m; and y=(A+ Bx)e™ .

or iii) complexroots i, = ptigand y= e'"(ACOqu + Bsinqx) .
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d? d
. a—dx——z + bi + ¢y = f(x)! Second order linear o.d.e. with constant coefficients a.b.c

It is not homogeneous since RHS is not zero.

Step One  Solve the corresponding homogeneous equation to get ¥ = ycr
This is called the “complementary function”.

Step Two The general solution of the full equationis ¥ = Ycr + Yps .
Where yps is a particular solution of the full equation.

Find yps by substituting a trial form into the full equation and equate the
2.
coefficients of the functions involved (e.g. e, .tz , COS X, ete.).

fx) Trial form of yps
k C

kx ... Cx+D

kil ... C +Dx+ E
k cos ax OR ksinax Ccos ax + D sin ax

ke™ Ce™

Sum/product of the above Sum/product of the above
(k, a are given constants) (C, D, E are constants to be determined)

Note T1F the suggested form of yps already appears in Ycr then multiply the trial form of
Yps by x until it does not appear in ycr.

e mra Ay g
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ERIES

e —————e - 4

Series involving constants

Sum of arithmetic series, Snp = a + (a+d) + (a+2d) + ... + [a+(n—1)d] = %[2; +(n- I)d]

ot _ a(l=r")

Sa=a+ar+ar+ar’ + ... +ar 7 .
-

Sum of geometric series,

llm Sn
n—eo

For lrl<1,

n
Z r2 = %(Zn-&lx:wl) '
=1

n
. n
Series of powers of natural numbers, Zr =E(n+l) .
r=1

z“: r =[;—(n +|)]2

-

L Hopital's rule:  When fla) = g(a) =0, llm[ f(x) =lim f (x)
=l g(x) | el g’ (x)

Tests of convergence of the series vy +uy +uy + U+ ... + Uy +

hlimu n= 0 is required for, but does pot guarsntee, convergence
LEE T

{converges for p>1

2) Useful series for comparison lest: — + —+—+—+
LA 1 39 4F diverges for p<1

< |, then the series converges

. lu .
3) D'Alembert's ratiotest:  If  lim ntll g > 1, then the series diverges
n-resl U,

= 1, then convergence is undetermined

o =
H Zlunl converges, thea ZU" converges
n=1 n=|

(x —3)3 + oo

f(x)=Fa) + f'(a)(x —a) + f‘,('a)(x -a)2 + f 3(|a)

Taylor series:

f (O)xz +f (0) 3
el]

Maclaurin series:  [(x) = {0} + (D) x  + o
3
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SERIES (CONTINUED) '

Taylor series: f(x)=f(a) + £’'(a)(x —a) + (a)(x - )“ - (a) —=(x —n) + -
Maclaurin series: f(x) = f(0)+ £'(0) x + f2(0) 2, £3L'°2 x3 .

Power series

o ltnx+ n(n2-|-l)x2 + "(“-13)'(" -2)1(3 +--- (-l<x<|1, when n nota positive integer)
l 2. .3 4 x2 x3 x4
=X FX T X R e (-l<x<l) In(l+x)=x—+——-——+-- (~l<x s
b3 2 3 4
3 5 7 2 3 4
lan x=x + X + 2x + 17x +~-(—£<x<£), e* =l+x+——+L-+x—+--- (forallx)
3 15 315 2 2 2 3t a
3 5 7 3 5 7
sin x—x—-—+x——x—+--- (forallx). sinhx = x+x—+i-+«x——+ (forall x).
357 3 b1l n
2 4 6 2 4 6
cosx=l-——t- 2 X 4 (forallx). cosh x =l +—— 42—y 2_4... (forallx ).
20 4 4 pi] 41 6!
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FQURIER SERIES
. . n 1 (neven)
Useful Results: Forinteger n,  sinnx =0 , cosnr = (~1) ={_l (n odd)
0 (n even) 0 (n odd)
sin n-’zf =1 (@=1,59..) cosnZ={ 1 (n=048,.)

-1 (n=3,11..) -1 (n=2,6,10....)
Forintegers n and m (not zero),

fsinnxdx = [ cosnx dx =0, [ sin® nxdx= [ cos’ nxdx=n

b23 x x . =
0 (n#m) .

f sin nx sin mx dx = [ cos nxcos mxdx = (a=m) Jsin nx cosmx dx =0
a (o=

2 pEs x

x L4
An EVEN function y = F(x) is symmetrical about the y - axis : F(—x) = F(x) and IF(x) dx —TZJ'F(x) dx.
. - [\

B x
An ODD function y = F(x) is symmetrical about the origin : F(—x)=—F(x) and jF(x) dx=0.
=

"even +even=cven”, "odd + odd = odd".

Sums of even/odd functions :
Products of even/odd functions : "even x even =even ", " odd x odd =even”, "odd x eveh =odd "

FORMULA SHEET 29

Fourier Series of Functions with Periodof L =21 /k :

a
Functions with Period of 27 : f(x) =T° +a,C08 X +2,C082x +8,C0S3x +---

+b,sinx +b,sin2x +b,sin3x +---

=?° z‘[a“ cosnx +bgsinnx] ,

ag =—’l; If(x)cosnx dx and by =% If(x)sin nxdx .
x

where a, =£ Jf(x) dx,

Forexample. f(x) definedover —7 < x<x when f(x) is an even or odd function :
Cosine series:  f(x)= 370 +a,cos X +2,cos 2x +a,cos3x +--- (when f(x)iseven, ie b, =0).
Sine series : f(x)= b,sinx +b,sin2x +b,sin3x +---

Forexample, f(x) definedover (O<x<x when f(x) isaneven or odd function :

2 2% .
U, =— jf(x)dx ag =— Jf(x)cosnx dx and by =0 (when f(x) is even).
’r n T L)
2 %
a4, =0, a, =0 and by =— [f(x)sin nxdx  (when f(x) is odd).
L

f(x)*T"-l-n cos kx +a, cos 2kx +a, cos3kx +--
+b, sinkx +b, sin2kx +b,sin3kx +...
=2y Y [ay, cosnkx +by, sin nkx]
n=|

where If(x) dx, ag =£L If(x)cos nkx dx
Lt L

t-IN

For example, f(x) defined over —% <x <% when f(x) is an even'or odd function :

Cosineseries: f(x)= —- + a, cos kx +a, cos 2kx + a, cos 3kx +--

Sine series : f(x)=

b, sinkx +b,sin2kx +b, sin3kx +---

and by, =% Jf(x) sin nkx dx .
1.

(when f(x)iseven, ie b, =0).

k!

For example, f(x) definedover 0O<x <% when f(x) is an even or odd function :

%
a, =% ff(x)dx.
o

"

a, =0, n=0 and by =— If(x)smnkxdx

an =% j.f(x)cos nkxdx and b, =0  (when f(x) is even).
]

(when f(x) is odd).

(when f(x)is odd, ie a, =aq =0).

(when f(x)isodd, ie a, =a, =0).

e s o N 4 e o el o

ST T
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VECTOR CALCULU

Then

Triple Products
+  f(ab)ezalb.c)
@y daz das
a.(bxc)=|a|[bxc|cosa= b by by (=0 when a, band ¢ arecoplanar )
€t €2 €3

(Scalar triple product)

ax(bxc)=(a.c)b—(a,b)c

(axb)xe=(a.c)b—(b.c)a (Vector triple product)

Differentiation

if a(t)= ay(Oi + ay(1)j + az(nk

day(1) k  ( whichis perpendicular to a(t) )

da(r) - dal(t)H daz(f)j_'_
dt dt dt

Similar results hold for differentiation with respect to x and for partial differentiation of vectors.

Differential operators grad and div

For a scalar field w(x, » z) and for a vector field V(x, ¥, z) =V(x.y.2)i+ Vy (5 y.2)j+V (x. 3.0k :

8¢+j E)w

3 ay 32 ie. “grad (scalar) = vector”

gradp =V =i—

where V@ s a vector that is perpendicular to the surface/contour (v(x. ¥, z) = constant

and  V@,a isthe rate of change of @(x,y,z) in the direction of a
(& is the unit vector in the directionof a)

3y, . .
divV =V V-[1$+ja—y+ka—z} (Vx|+Vy_|+Vzk)
av.
. |divV =V, V—-aL+ y+a—V‘- e. “div (vector) = scalar”
ox Jdy oz
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Differential operator curl
i j k -
V.

. cuﬂV:VxV:i i a =1 m——g_y. _j aV aV +k __’_3&1

ox dy oz dy 0Oz ox 0z ox dy J

V: Vy W,

i.e. “curl (vector) = vector”

Tdentities .

(@) curligrado = Vx(V:p):O
(o) diveurl V=V,(7xV)=0

9_¢9_¢

=y o
(Laplacian of @ , a similar result holds for

(c) divgradop = qu) =V (Vq:)—
vZv)

@ curl curl V =Vx(\7xv)=v(v.v)-v’-v

Integration _

For a space-dependent force F and/or a more involved path ,

For a constant force F and linear displacement r ,

C B C
Work Done by F along path ABC = [F,dr=[F.dr+ [Fudr
A A B

Forexample, when! F=F.l+F,j and dr=dri+dy]
then * Fdr = Fydx+ Fydy
where F, ,F) ,dxanddy take appropriate forms according to path

Conservative fields

C
If jF.dr is independent of the path taken between A and C then F is conservative

A
(but one would need to check all paths!)
The curl test : [VxF=0 if andonlyif  F is a conservative vector field]




.
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Flux
Flux of vector field A through a surface S =IA.dS .
S

where the vector area clement is dS =6idS and i is the unit normal to the (scalar) surface element dS
(A pointing outwards from a closed surface).

» |Fluxof A through § = [A.idS
S

Solid angles
§2 (steradians) = -é;— , where § is the surface area subtended at a sphere of radius r
r
“Full solid angle” = SISrEAea _ 4

. r2

Divergence theorem

For a closed surface S containing volume V IdivAdV = f A.dS
v S

(the right hand side is the flux of A through §)

Stokes’ theorem

For an open surface S with 2 bounding curve C

I(curl A),dS= fA.dr
S c

(the right hand side is the circulation of A around C)

MATRICES

Simultaneous linear equations ( 2 and by are constants) :

apx+apy+a;zz=b

ayxtapy+apz=b can be written as
ayxtapytapz=b
any a3 a4 x by
where  coefficient matrix A =|ay aj; a3 |. solwionmatrix x=|y{, b=|b,
a3 a3 axn z b3
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Matrix multiplication (the “row dot column rule”):

The i* element of the matrix product A B=C is given by the dot product of two vectors defined by
the i row of A andthe j* columnof B.IfAisa nxm matrix and B is mxp . then C is a nxp matrix.

Determinants
a b
A= [c d]

a5y 412 93

b
thea A=deA)=|Al=|"
C

=ad -be
d

I A=|ay aj; ap;|then, expansion across the first row of A gives,
a3y axp  az;
a1 412 443
a a a as azp a2
d=deA)=|Al=|ay ap apl=ay| 2 Bl-gp[? "Plia,
d3z di3 a31 a31 a3z

a31 a3z a3z

In general, .
der(A)= Y ay(-1)"*/ (m.inor of ay )= Y ajAij
. row/ column row/ col,
a
In the last example, A is the minor of element a5 ,
431 433 .
a7 a
-2 "B s the signed minor of ay; i.e. the cofactor A4, ,
431 a3
+ - +
and the factor (~1)"*/ generates thesigntable |- + -
+ - +
Properties of determinants

1) if each element of one row (or column) is multiplied by X then 4 — KA

2) 4=0 if a)all elements in one row (or column) are zero
or b) two rows (or columns) are identical or proportional

3) if two rows (or two columns) are interchanged then 4 — -4

4) A remains unchanged if a) A — AT
orif b) multiples of one row (or column) are added to another _]
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Solution using Cramer’s rule

ajx+apy+azz=b a) a; ap
For example, to solve the following system: Jagx +axny+apz=>by|, whereA=|ay az ax|,
a3 X +dzy +azz=b ay ayp an
Cramer's rule gives :
b a;3 a3 a; b a3 a1 app b
by ap anx az; by ap ax1 ap b
3 an ap _la by an c=io3 a3 b
det(A) ’ det(A) ' det(A)

Independence of equations
Given a system of n simultancous linear equations of which only m are independent:

If the system is jnhomogeneous.(b# 0); ¢ |A] #0 and m=n = unique non-trivial solution
e |A| =0 and m<n = infinite number of solutions
* |A]{ =0 and m=n = no solution (inconsistency)

If the i b

]

0): e¢|A]#0 = only the trivial solution x=0 exists
*|A| =0 = infinite number of solutions

Rank of a matrix

The rank of a matrix is given by the largest non-zero determinant that can be formed from the elements (in the
order that they appear within the original matrix)

For example, if A isan nxn matrix and | A |#0 then rank(A) = n, or if, for example, rank(A) = m<n
then | A |=0 but there exists an mxm submatrix that can be formed having non-zero determinant

To use the concept of rank in determining the character and existence of solutions of simultaneous equations,
consider both the coefficient matrix A and

aq; ey a;g B
Ap=|ay ayp apn b

a3 a3y ay by

the augmented coefficient matrix Ay that takes the form :

Then,
* rank(A) =rank(Ap) = n = unique solution
o rank(A) =rank(Ap) < # => infinite number of solutions
o rank(A) < rank(Ap) = no solution (inconsistency)
Note also that

¢ Inhomogeneous systems can only have non-trivial solutions
¢ Homogeneous systems are always consistent (have at least the trivial solution)
* |A|=0 required for non-trivial solutions of homogeneous systems
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Alternative way to determine the rank of 2 matrix

This procedure involves applying elementary row operations to the given matrix A to reduce it to echelon
(“staircase”) form. Once echelon form has been achieved then dependent equations have been eliminated and
rank(A) is given by the number of non-zero rows.

The elementary row operations are : (i) interchanging two rows
(i) multiplying a row by a number
(iii) adding a multiple of one row to another

Matrix inversion

The inverse of an nxn matrix A is another nxn matrix A™ suchthat AA'=A"A=1,
where lis the nxn identity matrix.

Notethat o If Ax= b then A"Ax=A"b andthus x=A"'b

 The inverse of a product of matrices is given by (BA)" =A™B™'

Finding A™
The formal method ATl =—]-CT where CT is the transpose of the matrix of cofactors
] det(A)
Ay Ay A Ay Ayp Ay
i.e. where C={Ayy Ap An and CT= Al Ay Ay
A3 Ay Az Az Ay Ap

(for definition of the cofactors, see formula sheet covering determinants)

The row reduction method

ay ap a3 i1
(i) Form the combined coefficient matrix Al , eg. Aill=|ay ajyp ax3 : 0
o

S - O
- Q Q

a3y diz; as;

(i) Apply elementary row operations on each row of A:I until it reduces to the form T:A ™~
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Eigenvalues and eigenvectors

n [

Then, Ax-Ax=0 andthus (A~AI}x=0 (ahomogeneous system).

det(A-A1)=0

(the characteristic equation)

A is the (scalar) eigenvalue and x is the corresponding eigenvector

For non-trivial solutions x of this homogencous system, we require:

When A isan nxn matrix, the characteristic equation gives an n” degree polynomial in A whose solution

gives the required n eigenvalues
(A-AI)x=0

Once the eigenvalues are found. substitution of each value of A into
yields each eigenvector (defined to within an undetermined scalar)

Example
If A isa 2x2 coefficient matrix then takes the form

[au 12 le]= ;{I:xl]

21 973 | *2 x2

while (A-2I)x=0  becomes
ay ap 1 0 Y x _-FO'
az) arxy 01 _X2 _0_
i.e. the homogeneous system

[a“—ll a2 -_X|] -O-
azy  ap-i]x

In this case, the characteristic equation is a quadratic in A and is found from:

ap - A alz).l=0
a1 axp-—
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PARTIAL DIFFERENTIAL EQUATIONS (PDE’s)

Some important pde’s
Laplace’s equation
V2= flx,y,2) Poisson’s equation
2 1 du e . .
Vo = ———| Diffusion (or heat flow) equation
az ot
2
2 1 d“u .
Vou=——rro Wave equation
2 32 o
Verifying the solution of a pde

The general solutions of pde’s involve arbitrary functions (rather than arbitrary constants)

Here is an example. Suppose you are asked to verify that . where u =u(x,y),
is a solution of a given pde such as '

' aﬂ-l-b&:O . where a and b are constants
ox dy

In this case, F is the arbitrary function, and itis a finction of the function u(x, y)

Use the chain rule to work out ‘;ﬂ d % , and then substitute the results into the given pde.
x
dv_dF du dv _ oF du
i. thefactthat |—=—— d |[—=—=
i.e. use the fact tha Fe e an %
Solving pde’s 1

Many of the techniques for solving ode’s may be used (such as the integrating factor method) provided that
constants of integration (in the ode technique) are replaced with the appropriate arbitrary functions in the
process of solving a pde. These arbitrary functions arise from “partial integration”, i.e. integrating with
respect to only one of the independent variables.

2
For example, direct integration (with respect to only x) of ai—al; =2x-y
yields M 2y +Gly)
oy

2
and G(y) is an arbitrary function of y that disappears when %( %yu_] = %ayu— is evaluated.

R O
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Solving pde’s 1I

Continuing the theme of adapting ode methads to solve pde’s, recall the solution of second order ode’s with
constant coefficients. This topic breaks down into two main parts:

0 uatios

For homogeneous ode's (with a single independent variable x),  one sels y=Ae™,

For a homogeneous pde that has two independent variables (xandy), set y=A4 e +by
and this allows one to guess the form of the generai solution.

Inhomogeneous eguations

As with ode’s, one can find the general solution of the homogeneous system first and then use the method of
undetermined coefficients to find a particular solution of the full equation, Addition of these two solutions
yields the required general solution.

Solving pde’s III

The important pde method of separation of variables has a similarity with the ode method of the same
name, but it is more involved. Here, the method is illustrated by example.

Suppose we wish to solve the boundary-value problem = =4— , u(0,y)= e~

¢ We assume the solution can be expressed as a product of unknown fanctions of each of the independent

variables  i.e. substitute the following into the pde
u(x y) = X(@)¥r(y)

* Rearrange the result so that the LHS depends only on x and the RHS depends only on y.

In this example, we find:
1 X 19Y
4X ox Y dy
* Equating LHS and RHS to the “separation constant” ¢,
yields two odes's:
X _cax| and [Focr
dx dy

with solutions: X =Ae*| and IEBCC‘V]

* Reconstruct w = XV and apply the boundary condition(s) to « or to a sum of solutions of this form

ie. o= X = kN Ghere i = 48]

and boundary condition Lt(O. y) =873 = gec(Oty ’I yields [u(x, y) = 8e—34x+y)




