

BSc Physics Level 5 Induction Session

15th September 2023

11 September 2023	Welcome/Induction	0	
18 September 2023	Trimester 1 1	1	
25 September 2023	Trimester 1 2	2	\checkmark
2 October 2023	Trimester 1 3	3	\checkmark
9 October 2023	Trimester 1 4	4	\checkmark
16 October 2023	Trimester 1 5	5	\checkmark
23 October 2023	Trimester 1 6	6	\checkmark
30 October 2023	Trimester 1 7	7	\checkmark
6 November 2023	Trimester 1 8	8	\checkmark
13 November 2023	Trimester 1 9	9	\checkmark
20 November 2023	Trimester 1 10	10	\checkmark
27 November 2023	Trimester 1 11	11	\checkmark
4 December 2023	Trimester 1 12	12	\checkmark
11 December 2023	Trimester 1 13	13	\checkmark
18 December 2023	Christmas Vacation	14	
25 December 2023	Christmas Vacation	15	
1 January 2024	Christmas Vacation	16	
8 January 2024	Welcome/Induction	17	\checkmark
15 January 2024	Trimester 2 1	18	\checkmark
22 January 2024	Trimester 2 2	19	\checkmark
29 January 2024	Trimester 2 3	20	\checkmark
5 February 2024	Trimester 2 4	21	\checkmark
12 February 2024	Trimester 2 5	22	\checkmark
19 February 2024	Trimester 2 6	23	\checkmark
26 February 2024	Trimester 2 7	24	\checkmark
4 March 2024	Trimester 2 8	25	\checkmark
11 March 2024	Trimester 2 9	26	\checkmark
18 March 2024	Trimester 2 10	27	\checkmark
25 March 2024	Easter Vacation	28	(Bank Holiday Friday)
1 April 2024	Easter Vacation	29	(Bank Holiday Monday)
8 April 2024	Easter Vacation	30	
15 April 2024	Trimester 2 11	31	\checkmark
22 April 2024	Trimester 2 12	32	\checkmark
29 April 2024	Trimester 2 13	33	\checkmark

Modules

T1	Electro- magnetism	Quantum Physics	Thermal Physics	Waves and Optics	Physics Laboratory 2 Heather Yates (Experimental)	Option Modules
	John Proctor	lan Morrison	Dan Bull	James Christian Tiehan Shen	Dan Bull (Computational)	Acoustics Languages
					Option Module	Languages
Т2					Group Project	

Trimester 1 Timetable

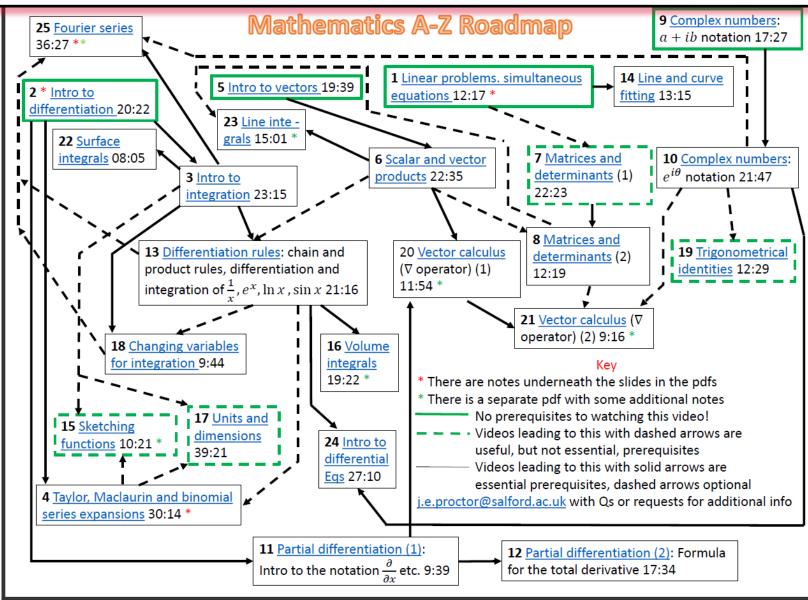
	9	10	11	12	13	14	15	16	17
Mon									
Tue	Electromagnetism Peel G10				Quantum Physics Maxwell 819				
Wed									
Thu	Waves and Optics Maxwell 819			Thermal Physics Maxwell 819					
Fri	Physics Lab: Exp GROUP ASEE Building SB3.07Physics Lab: Computing GROUMaxwell 200					Maxwell 200	b: Exp GROU		

Assessment Deadlines

TRIMESTER 1 ASSIGNMENT DEADLINES				
Quantum Physics	50%	Wednesday 6 th December		
Thermal Physics	50%	Friday 8 th December		
Physics Laboratory 2 (Experimental)	50%	Monday 11 th December		
Electromagnetism MCQ Test	30%	Tuesday 12 th December		
Physics Laboratory 2 (Computing)	50%	Wednesday 13 th December		
Waves and Optics WAVES ONLY	50%	Friday 15 th December		

TRIMESTER 2 ASSIGNMENT DEADLINES

Group Project (CAD and Interfacing Exercises)	30%	Friday 1 st March
Group Project (Report and Presentation)	70%	Friday 26 th April
Electromagnetism (Exam)	70%	Friday 26th April [PROVISIONAL]
Quantum Physics (Exam)	50%	Monday 29th April [PROVISIONAL]
Thermal Physics (Exam)	50%	Wednesday 1 st May [PROVISIONAL]
Waves and Optics (Exam) OPTICS ONLY	50%	Friday 3rd May [PROVISIONAL]

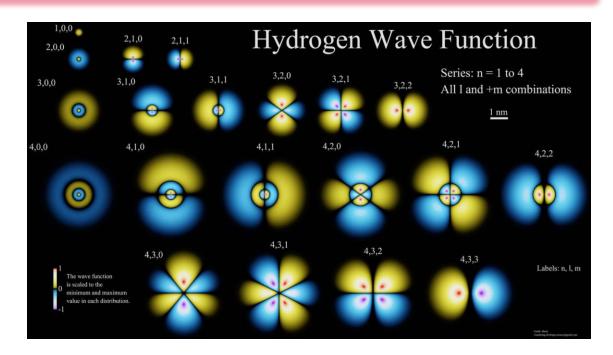

Electromagnetism

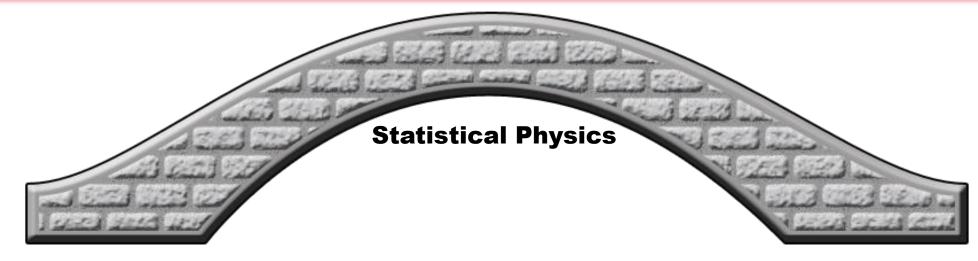
Learning outcomes

□ The basic laws of electric interaction (Coulomb's law -> Gauss's law etc.)

- □ The basic laws of magnetic interactions, leading to understanding of electromagnetic self-induction and mutual induction.
- The construction of Maxwell's equations. Their solution for the electric fields from monopoles and dipoles, magnetic fields from dipoles and the propagation of electromagnetic waves in vacuum.
- Common examples of static electric and magnetic fields.
- Reflection and refraction of electromagnetic waves, and propagation down transmission lines / waveguides.
- Generation of electromagnetic waves from antenna, synchrotron effect.

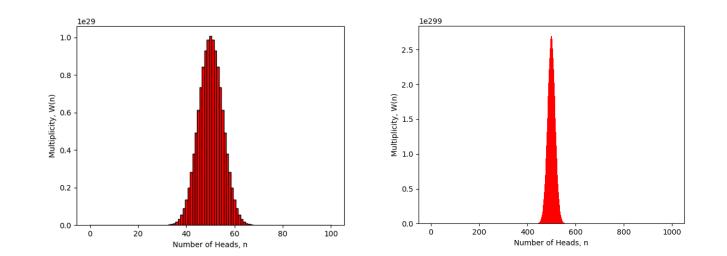
Electromagnetism (but relevant to all modules)

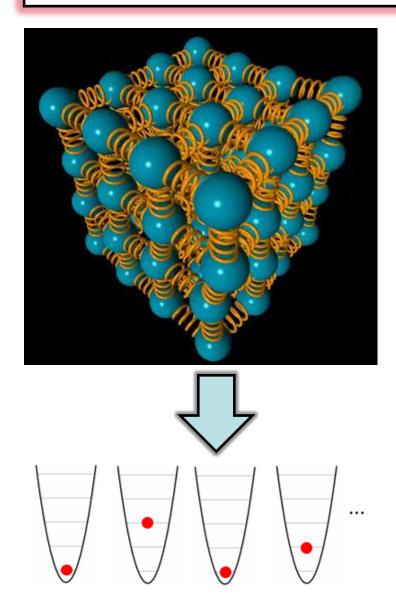


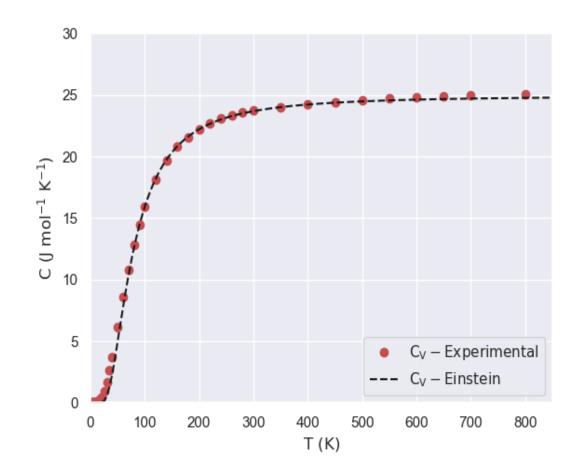

Quantum Physics

- Breakdown of classical physics
- De Broglie waves
- Wavepackets
- The uncertainty principle
- Schrodinger's wave equation
- The time independent Schrodinger equation
- 1-D examples
- Quantum Tunnelling
- 3-D quantum mechanics the Hydrogen Atom
- The formal rules of quantum mechanics
- Angular Momentum and Intrinsic Spin
- Approximation Methods
- Time Dependence
- Many Particle Systems

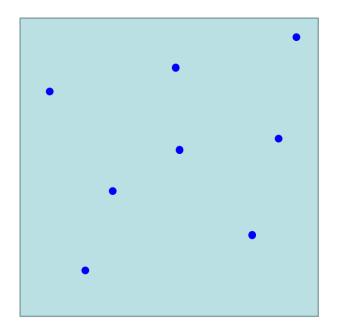
Recommended Texts

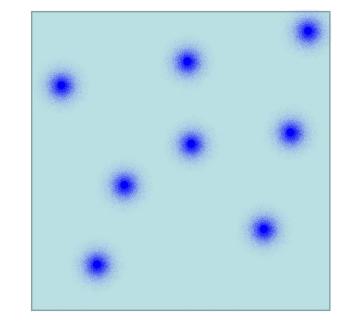

- Quantum Mechanics A.I.M. Rae (4th Edition)
- Quantum Mechanics of Atoms, Molecules and Solids Eisberg and Resnick
- Introduction to Quantum Mechanics Griffiths and Schroeter
- Hyperphysics : http://hyperphysics.phy-astr.gsu.edu/

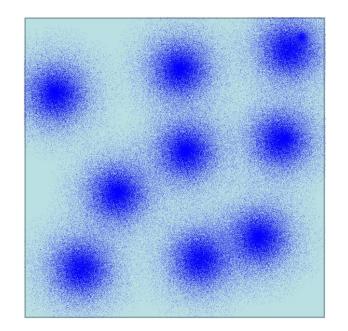


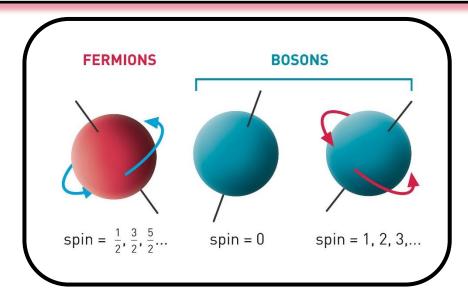


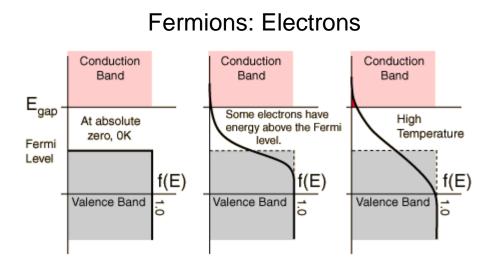
Microscopic World

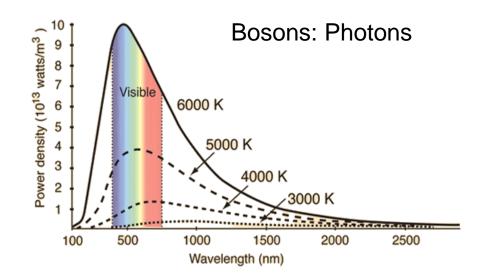

Thermodynamics








Classical and Quantum Statistics: Distinguishability



Waves and Optics (Waves)

Aims & objectives

□ The WAVES half of the module provides an introduction to vibrations and waves in classical physics.

- Builds on elementary phenomena covered in Level 4 by establishing a more rigorous mathematical footing for understanding physics.
- □ Everything in WAVES is a precursor to the *Quantum Mechanics* module

(e.g., operators, eigenvalue problems, Fourier decompositions)

Pre-requisites

□ Pre-requisites from prior mathematics are:

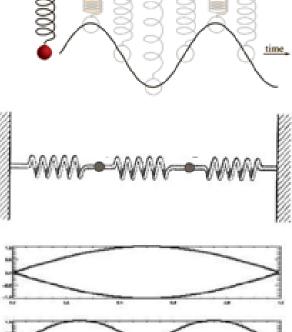
- (i) ordinary and partial differentiation,
- (ii) complex numbers,
- (iii) ordinary differential equations (ODEs)
 - (linear, 2nd-order, homogeneous & inhomogeneous, constant coeffs.),
- (iv) elementary matrices,
- (v) Fourier series.

See John's videos!

Waves and Optics (Waves)

Starts with a simple harmonic motion (including damping and external forcing), such as a mass on a spring. Starts with Hooke's law, the SHO equation, and initial-value problems:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega_0^2 x = 0.$$


Then on to coupled oscillators and the concept of normal modes (need matrices)... a fundamental idea that underpins QM, too!

$$\frac{d^2 X_1}{dt^2} + 2\omega_0^2 X_1 - \omega_0^2 X_2 = 0, \quad \frac{d^2 X_2}{dt^2} - \omega_0^2 X_1 + 2\omega_0^2 X_2 = 0.$$

Part 2: Waves

Unpicking the classical wave equation (a PDE),

$$\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2} - \frac{\partial^2\phi}{\partial x^2} = 0,$$

and its properties / basic solutions. Then using Fourier decomposition to solve boundary-value problems (e.g., standing waves on a string... also crucial for QM!).

Finally, will look at sound waves in a gas (need some thermodynamics...)

Waves and Optics (Optics)

Diffraction, interference and coherence.

□ Fourier Transforms and convolutions,

Fourier Optics. Fraunhoffer and Fresnel diffraction

□ Single and double slits, gratings, multiple apertures

Interferometers and applications

Physics Laboratory 2

The module is split 50:50 into an experimental and a computational component

Assessment is via 'journals' where you will submit work during the semester, and receive an overall mark

There is as experimental journal and a computational journal

Experimental Laboratory - Mark Breakdown

Weekly experiments with data and analysis logged in Journal (50%)

Choice of one of these for –

Oral presentation and interview (20%)

Technical report (30%)

- All sections of this assessment are part of an accumulative mark for this component.
- No one section is pass/fail as the overall assessment mark determines this.
- A PMC can only be submitted for failure of overall assessment, not its parts.

Physics Laboratory 2: Computational

There is an Introductory Session and

10 Topics with Journal Exercises

- 1. Data Manipulation and Plotting
- 2. Visualising 2D Data Sets
- 3. Numerical Integration
- 4. Systems of Linear Equations and Matrices
- 5. Solving Non-linear Equations
- 6. Fourier Transforms
- 7. 1st Order Ordinary Differential Equations
- 8. 2nd Ordinary Differential Equations
- 9. Partial Differential Equations Boundary Value Problems
- 10. Partial Differential Equations Initial Value Problems

- We will start from scratch
- Each topic has a set of notes and examples, and a set of practice exercises (with example code provided)
- There will also be two 'Journal Exercises' for which code and a supporting report should be submitted to the computational journal. CODE MUST BE
 DEMONSTRATED IN PERSON BEFORE SUBMISSION

Please go to the blackboard site to see the material for an Introduction to Python Programming

Physics Laboratory 2

Experimental Lab	Computing Lab	
10:00 – 13:00	10:00 - 13:00	
Group A	Group B	
14:00 – 17:00	14:00 - 17:00	
Group B	Group A	

NOTE: Both labs run for 3 hours.

Groups for Physics Laboratory 2

Group A		Group B
George	Boustany	Morgan McDonald
Robert	Couchman	Matthew Meadowcroft
Joshua	Daniels	Alexander Omekara
Declan	Davison	Ellie Rea
David	Dsouza	Emmanouil Savva
Zaher	Faruk	Harry Walker
Daniel	Feist	Kyle Watson
James	Hammond	Emily Welsh
Blake	Holmes	Natalie Yau
Matthew	Makin	Bradie Zimmer Collins